
Graduate Texts in Mathematics

Rabi Bhattacharya
Edward C. Waymire

Random Walk, 
Brownian 
Motion, and 
Martingales



Graduate Texts in Mathematics 292



Graduate Texts in Mathematics

Series Editor:
Ravi Vakil, Stanford University

Advisory Board:
Alejandro Adem, University of British Columbia
David Eisenbud, University of California, Berkeley & MSRI
Brian C. Hall, University of Notre Dame
Patricia Hersh, University of Oregon
Jeffrey C. Lagarias, University of Michigan
Eugenia Malinnikova, Stanford University
Ken Ono, University of Virginia
Jeremy Quastel, University of Toronto
Barry Simon, California Institute of Technology
Steven H. Weintraub, Lehigh University
Melanie Matchett Wood, Harvard University

Graduate Texts in Mathematics bridge the gap between passive study and
creative understanding, offering graduate-level introductions to advanced topics
in mathematics. The volumes are carefully written as teaching aids and highlight
characteristic features of the theory. Although these books are frequently used as
textbooks in graduate courses, they are also suitable for individual study.

More information about this series at http://www.springer.com/series/136

http://www.springer.com/series/136


Rabi Bhattacharya • Edward C. Waymire

Random Walk, Brownian
Motion, and Martingales



Rabi Bhattacharya
Department of Mathematics
The University of Arizona
Tucson, AZ, USA

Edward C. Waymire
Department of Mathematics
Oregon State Univeristy
Corvallis, OR, USA

ISSN 0072-5285 ISSN 2197-5612 (electronic)
Graduate Texts in Mathematics
ISBN 978-3-030-78937-4 ISBN 978-3-030-78939-8 (eBook)
https://doi.org/10.1007/978-3-030-78939-8

Mathematics Subject Classification: 60G05, 60G07, 60G17, 60G18, 60G22, 60G42, 60G50, 60G60,
60J65, 60J80

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-78939-8


To

Gouri (In Loving Memory)

and

Linda



Preface

The theory of stochastic processes has numerous and longstanding significant
interactions with pure and applied mathematics as well as most branches of physical
and biological sciences. Our aim is to present a graduate-level course built on four
pillars of the subject—random walk, branching processes, Brownian motion, and
martingales. Much of the theory is developed by building on simple examples. This
approach helps to develop intuition and it provides a specific context in which to
check more subtle aspects of the proofs.

The prerequisite is a one-semester/quarter of graduate level probability. In detail,
it should include the following: (1) Caratheodory’s theorem for construction of
measures, integration of functions on a measure space, dominated and monotone
convergence theorems, and the Radon–Nikodym theorem; (2) Kolmogorov’s exis-
tence theorem for construction of probability measures on infinite product spaces,
and independence; (3) characteristic functions; (4) the strong law of large numbers
and the classical central limit theorem; and (5) conditional expectation. There are
many excellent texts and online resources for this purpose. In addition, throughout
this text the authors’ footnotes to the second edition of their text A Basic Course in
Probability Theory, denoted BCPT, provide specific page or chapter references to
the prerequisite material in analysis and probability as needed.

Chapter 1 begins with technical definitions of stochastic processes in discrete and
continuous time, and of random fields, illustrated with examples. The text moves
on to the first major topic, namely random walks. Chapters 2, 3, and 7 provide a
comprehensive account of the simple random walk in one dimension, made up of
successive sums of i.i.d. random variables, each taking a value +1 with probability
p, and a value −1 with probability q = 1 − p, 0 < p < 1. The one-dimensional
version of the Einstein/Smoluchowski theory of Brownian motion is derived from
it later under the topic of Brownian motion. Chapter 4 is devoted to simple d-
dimensional symmetric random walk whose steps assign equal probability (namely
1/2d) to each of the 2d neighboring points of the origin in the d-dimensional integer
lattice. Fascinating contrasts in the dynamics occur for different values of d.

Chapter 5 on Poisson and compound Poisson processes provides well-known
continuous time analogues of random walks. That is, they are processes with
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viii Preface

independent increments and are therefore Markov. The study of general continuous
time processes, as well as random fields, involves some technical issues such as
sample path continuity. These are covered in Chapter 6, which provides broad
criteria for regularity due to Kolmogorov and Chentsov. In particular, it is shown
that Brownian motion has continuous sample paths.

Chapter 7 shows that processes with independent increments, such as random
walks, Poisson and compound processes, as well as Brownian motion, have the
strong Markov property, a stronger and highly useful version of the Markov
property. Chapter 8 deals with a different kind of asymptotic behavior of general
lattice-valued random walks using an important technique referred to as coupling.
The specific limit theorems concern renewal theory and the problem of estimating
the speed of convergence to equilibrium for a class of Markov chains. Chapter 9
rounds out the study of discrete time processes with branching processes, another
important class of Markov chains with important applications in a number of fields
including biology and physics.

In addition to the construction and sample path regularity of Brownian motion in
Chapter 6, and its strong Markov property in Chapter 7, the functional central limit
theorem, proved in Chapter 17, is a cornerstone theorem linking Brownian motion as
a universal space-time scaling limit of a random walk having finite second moments.
It makes precise the idea that Brownian motion is approximately a random walk
under appropriate scaling of time and space. Chapters 16 through 20 study further
properties of Brownian motion and related processes, often from this point of view.

Martingale theory, the final major topic, is presented in Chapters 10 through 13.
The theory, mostly due to Joseph L. Doob, has virtually revolutionized probability
theory. This theory is now indispensable to the modeling and analysis of various
phenomena in stochastic processes. Chapter 15 on the martingale characterization
of the Poisson process and Chapter 14 on super-critical Binaymé–Galton–Watson
branching process provide further illustrations of some of the power of martingale
theory.

The last part of the book, Chapters 21 through 28, presents a number of
important contemporary applications of stochastic processes. These are somewhat
more specialized, or more technical, than the theory presented in the main text.
Nonetheless, they are topics of much recent interest. For example, the rather
deep general renewal theorem of Blackwell is essential for modern theory of
ruin in insurance; the binomial tree model of mathematical finance is of much
interest in financial mathematics; two different and widely discussed views of Hurst
phenomena are still a matter of debate. Essential features of the modern theory of
branching excursions, branching random walks, and multiplicative cascades appear
in Chapters 21 and 22, while the final chapter is on a distinct but related probabilistic
treatment of the global solvability of the 3d incompressible Navier–Stokes equation,
one of the most important unsolved problems in mathematics. The instructor may
choose one or two of these topics depending on time available and the interest of
the class.

In general, journal and book attributions are cited as Author (year) in the
text, or as footnotes, as they occur. Complete references to these are provided
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under References in the end pages. The list Related Books and Monographs is a
compilation of some related textbooks and research monographs, including those
cited in the text.

The authors are grateful to Springer Editor Loretta Bartolini for patience and
guidance. We would like to thank our colleagues William Faris and Enrique
Thomann for their continued advice and encouragement. We are grateful to Josie
O’Harrow for technical assistance in providing TIKZ code for the figures that appear
in the text. The authors gratefully acknowledge partial support (DMS1811317,
DMS-1408947) of the National Science Foundation during the preparation of this
book.

Tucson, AZ, USA Rabi Bhattacharya
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Ten Week Course Suggestions
(A) Random Walk and Brownian Motion: 1–4, 6–8,10–11,16–20

(B) General Stochastics: 1–4, 5, 7, 9–12,14,16–20

RW = Random Walk

BP = Branching Process

PP = Poisson Process

BM = Brownian Motion

KC = KolmogorovŰChentsov

RT = Renewal Theory

M = Martingale
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Chapter Dependency Diagram

Double arrow indicates related material but not required in respective proofs.
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Chapter 1
What Is a Stochastic Process?

This chapter provides the mathematical framework and example illustrations
of stochastic processes as families of random variables with values in some
measurable (state) space S, such as the integers or the real line or higher
dimensional Euclidean space, and indexed by some set Λ. Examples include
i.i.d. sequences, random walks, Brownian motion, Poisson processes, branch-
ing processes, queue processes, Markov processes, and various martingale
processes. Special emphasis is given to existence and constructions of these
important classes of stochastic processes.

As remarked in the Preface, throughout the text, the author’s footnote references
to the second edition of Bhattacharya and Waymire (2016) A Basic Course in
Probability Theory, denoted BCPT, are used as an Appendix for prerequisite
material in analysis and probability as needed. However, there are many excellent
texts and on-line resources that can be used for this purpose.

A stochastic process X = {Xt : t ∈ Λ} is a family of random variables defined
on a probability space that are generally linked by evolutionary rules indexing time,
or interactions indexed by space. The temperature records Xt at the t th (integer) unit
of time may be viewed as a family of random variables {X0, X1, . . .} indexed by the
discrete-time parameter t ∈ Z+. The number Xt of page clicks on a given website
during the (continuous) time interval [0, t] gives rise to a collection of random
variables {Xt : t ≥ 0} indexed by the continuous-time parameter t . The velocity
Xt at a point t in a turbulent wind field provides a family of random variables
{Xt : t ∈ R

3} indexed by a multidimensional spatial parameter t .
Given an index setΛ, a stochastic process indexed byΛ is a collection of random

variables {Xt : t ∈ Λ} defined on a probability space (Ω,F , P) taking values in a
set S, equipped with a σ -field S . The set S, or more precisely the (pair) measurable
space (S,S), is called the state space of the process. Typically S is a metric space

© Springer Nature Switzerland AG 2021
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2 1 What Is a Stochastic Process?

and S is its Borel σ -field generated by the open subsets of S. In particular, in the
above, one may take, respectively: (i) Λ = Z+, S = R+; (ii) Λ = [0,∞), S = Z+;
(iii) Λ = R

3, S = R
3, and accordingly with their respective Borel σ -fields under

an implicitly assumed standard discrete or Euclidean metric. For the most part we
shall study stochastic processes indexed by a one-dimensional set of real numbers
(e.g., generally thought of as time). Here the natural ordering of numbers coincides
with the sense of evolution of the process. The selection of discrete or continuous
units to index a stochastic process is a model choice, but linear order is lost for
stochastic processes indexed by a multidimensional parameter; such processes are
usually referred to as random fields. More precisely one can make the following
definition.

Definition 1.1. Let (S,S) be a measurable space and Λ a non-empty set. A family
X := {Xt : t ∈ Λ} of random variables defined on a probability space (Ω,F , P)
taking values in S is referred to as a stochastic process with state space (S,S) and
index set Λ.

Remark 1.1. Sometimes one stipulates that Xt ∈ St for t ∈ Λ, where each (St ,St )

is a measurable space. Typically each St is a Borel subset of a complete metric space
S, with Borel σ -field S , topologically referred to as a standard space. Also St may
be referred to as the state space of Xt , and S as the state space for the process.

A somewhat generic picture is to view Xt as the state of a randomly moving
particle in S at time t . The distribution of Xt for fixed index point t ∈ Λ is a
probability Qt on (S,S) defined by Qt (B) := P(Xt ∈ B), B ∈ S . That is, the
probability P defined on (Ω,F) induces a probability Qt on (S,S) via the map Xt :
Ω → S through inverse images defined and denoted by [Xt ∈ B] ≡ X−1

t (B) :=
{ω ∈ Ω : Xt (ω) ∈ B}, B ∈ S; the square bracket notation will continue to be used
to denote inverse images of random variables throughout this text. That said, writing
“P(X ∈ B)”in place of “P([X ∈ B])”is a minor abuse of notation that is also
employed. A little more generally, given a finite set of distinct indices {t1, . . . , tm} ⊂
Λ the corresponding finite-dimensional distribution of (Xt1 , . . . , Xtm ) is defined by

Qt1,...,tm (B) = P((Xt1 , . . . , Xtm ) ∈ B), B ∈ S⊗m . (1.1)

Within the theory of stochastic processes it is useful to consider the distribution
of states in terms of the more general distribution Q induced by the entire process
X = {Xt : t ∈ Λ}, viewed as a “random path” t → Xt , within an appropriate
path space (Γ,G) where, for example, Γ ⊂ SΛ is a set of functions (sample paths)
defined on Λ and taking values in S. Γ can typically also be viewed as a metric
space and G its corresponding Borel σ -field. To illustrate, suppose that one has a
stochastic process X on a probability space (Ω,F , P), taking values in S = R

whose sample paths t → Xt (ω), 0 ≤ t ≤ 1, (ω ∈ Ω), are continuous. Then
one might naturally consider Q(G) = P(X ∈ G) ≡ P([X ∈ G]) where G is a
Borel subset of the metric space Γ = C[0, 1], with supremum distance between
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functions (paths) in C[0, 1]. Path space distributions will be further illustrated in the
forthcoming examples.

The following result of Kolmogorov asserts, conversely, the existence of a unique
probability measure P on the product space (Ω = SΛ,F = S⊗Λ), such that, given
a family of distributions Qt1,...,tm on (S{t1,...,tm },S⊗{t1,...,tm }) for all m = 1, 2, . . . ,
and all m-tuples (t1, . . . , tm) of distinct indices in Λ, the coordinate projections
Xt : Ω → S given by Xt (ω) = ω(t), (ω = {ω(t) : t ∈ Λ}), have the
family of finite-dimensional distributions (1.1), provided some obvious simple
consistency requirements and possible topological conditions are satisfied by the
given probability distributions Qt1,...,tm .

The product space S{t1,...,tm } may be replaced by the Cartesian product St1×St2×
· · ·× Stm , and its product σ -field denoted as St1 ⊗St2 ⊗· · ·⊗Stm in the case Xt has
state space St ; see Remark 1.1.

For a precise general statement of Kolmogorov’s existence (or extension)
theorem, we allow the state space of Xt to be (St ,St ), not necessarily the same
for all t . But for each t the state space is assumed to be Polish, i.e., a topological
space metrizable as a complete separable metric space. The consistency conditions
on the family of measures Qt1,...,tm simply ensure that (a) the distribution of
(Xti1

, . . . , Xtim ) is the same as obtained from that of (Xt1 , . . . , Xtm ) under the
permutation (i1, . . . , im) of (1, . . . ,m), and (b) for any set of distinct indices
t1, . . . , tm, t , the distribution of (Xt1 , . . . , Xtm ) is the same as obtained from that of
(Xt1 , . . . , Xtm , Xt ), by letting Xt be free (i.e., simply requiring Xt ∈ St ). Formally,
the consistency conditions are the following:
(c1) For each m = 1, 2, . . . and every m-tuple of distinct indices (t1, . . . , tm), and
for each permutation π of (1, 2, . . . ,m),

Qtπ(1),...,tπ(m) = Qt1,...,tm ◦ π−1 (1.2)

on (Stπ(1) × · · · × Stπ(m) ,Stπ (1) ⊗ · · · ⊗ Stπ(m) ). Here π : St1 × · · · × Stm → Stπ(1) ×
· · · × Stπ(m) is given by π(xt1 , . . . , xtm ) = (xtπ (1), . . . , xtπ (m)) and π−1 is its inverse
transformation.
(c2) For each m and every (m+ 1)-tuple of distinct indices t1, . . . , tm, t , one has for
every B ∈ St1 ⊗ St2 ⊗ · · · ⊗ Stm ,

Qt1,...,tm (B) = Qt1,...,tm ,t (B × St ). (1.3)

Theorem 1.1 (Kolmogorov’s Existence Theorem1). Assume that for every t the
space St is Polish with St as its Borel σ -field. Then given a family of distributions
Qt1,...,tm on (St1×St2×· · ·×Stm ,St1⊗St2⊗· · ·⊗Stm ) for all m = 1, 2, . . . , and all m-
tuples (t1, . . . , tm) of distinct indices, satisfying the consistency conditions (c1), (c2)

1For a proof using Caratheodory’s extension theorem see BCPT p. 168. Another elegant proof
due to Edward Nelson using the Riesz Representation theorem may be found in Nelson (1959), or
BCPT, p. 169.
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above, there exists a unique probability P on (Ω = ∏
t∈Λ St ,F = ⊗t∈ΛSt ) such

that the coordinate projections Xt (t ∈ Λ) have the prescribed finite-dimensional
distributions (1.1).

Remark 1.2. If the index set Λ is linearly ordered, e.g., if it is an interval, or the set
Z of all integers, or the set Z+ of all non-negative integers, and one is provided with
all finite-dimensional distributions Qt1,...,tm for t1 < t2 < · · · < tm , then one may
just check (c2) with tm < t . Condition (c1) is satisfied automatically by defining
Qtπ(1) , . . . , Qtπ(m) using (1.2).

Example 1 (Product Probabilities and Independent Families of Random Variables).
Let (St ,St , Qt ), t ∈ Λ, be a family of probability spaces, and Qt1,...,tm be the
product probability measure Qt1 × Qt2 × · · · × Qtm on (St1 × St2 × · · · × Stm ,St1 ⊗
St2 ⊗ · · · ⊗ Stm ), such that

Qt1,...,tm (Bt1 × Bt2 × · · · × Btm ) = Qt1(Bt1)Qt2(Bt2) · · · Qtm (Btm ), (1.4)

for Bti ∈ Sti , i = 1, . . . ,m. The consistency conditions (c1), (c2) are then trivial
to check. The probability measure P on (Ω = ∏

t∈Λ St ,F = ⊗t∈ΛSt ) with
this family of finite-dimensional distributions is called the product probability of
(St ,St , Qt ), t ∈ Λ. The coordinate projections Xt , t ∈ Λ, then form a family
of independent random variables. It may be noted that in this case the statistical
independence can be exploited to the effect that no topological assumption is needed
on the spaces St for existence according to a theorem of Tulcea.2 In the case St = S
are the same for all t , the family {Xt : t ∈ Λ} is referred to as an i.i.d. (independent
and identically distributed) S-valued family of random variables.

Often the stochastic process of interest is obtained as a functional of another process
already known to satisfy Kolmogorov’s, or Tulcea’s, conditions, thus avoiding the
more elaborate verification of these conditions for its construction. This point is
illustrated in several of the following examples.

Example 2 (General Random Walk and the Simple Random Walk). Let St = R
k for

all t in the index set Λ = Z++ = {1, 2, 3 . . . }. For an arbitrary common probability
Qt = Q on R

k with Borel sigma-field S , one may construct the product probability
measure P on (Ω = R

Z++ ,F = S⊗Z++) and the i.i.d. sequence {Xt : t ∈ Z++}
by coordinate projections, as in Example 1. The (general) random walk with step
size distribution Q, starting at a point x ∈ R

k , is then defined by a functional of the
process of displacements via

S0 = x, Sn = S0 + X1 + · · · + Xn (n = 1, 2, . . . ). (1.5)

One may let S0 = X0 , where X0 is an R
k-valued random variable, with some

distribution Q0, independent of the family of increment or displacement random

2For a general statement and proof of Tulcea’s theorem, see Neveu (1965), pp. 162–167.
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t → N(t, w)

1

2

3

k

A1 A2 Ak t

| T1 | T2 | |

}+1

}+1

Fig. 1.1 Poisson Process Sample Path

variables {Xn : n ∈ Z++}. For this one may consider the product probability on
the enlarged index set Λ = Z+ = {0, 1, 2, . . . } in Example 1, with Q0 as the
distribution of X0, and Qn = Q for all n ∈ {1, 2, . . . }. As an important special
case one considers k = 1, S = {−1,+1}, Q({+1}) = p, Q({−1}) = 1 − p = q,
say, 0 < p < 1. The corresponding i.i.d. sequence of displacements (or increments)
{Xn : n = 1, 2, . . . } is a sequence of Bernoulli random variables, and the one-
dimensional simple random walk is then defined by (1.5), where the distribution
Q0 of X0 on {−1,+1} may be arbitrary, including a degenerate one (i.e., a one-
point distribution Q0 = δx ). When p = q = 1/2, this simple random walk is called
a simple symmetric random walk. A generalization is the k-dimensional simple
(symmetric) random walk on S = Z

k having step size distribution Q, concentrated
on {±ei : i = 1, 2, . . . , k}, with Q({ei }) = Q({−ei }) = 1/2k, (i = 1, 2, . . . , k).
Here ei has +1 as its i-th coordinate and zeros as its remaining coordinates.

Another example of a construction of a process as a functional of an i.i.d.
sequence is the following; see Figure 1.1.

Example 3 (Poisson Process). Let T1, T2, . . . be an i.i.d. sequence of exponential
random variables with parameter θ > 0 (or, mean 1/θ ). That is, they have the
common exponential density
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ϕ(y) = θ exp{−θy}1[0,∞)(y). (1.6)

Define the Poisson process {N (t) : t ≥ 0}with parameter θ , as N (t) = 0 for t < T1,
and

N (t) = n, t ∈ [T1+T2+· · ·+Tn, T1+T2+· · ·+Tn+1), n = 1, 2, . . . . (1.7)

One may check that the random variable N (t) has the Poisson distribution with
mean θ t (Exercise 2). The arrival times An = T0 + T1 + · · · + Tn−1, n ≥ 1, may
be viewed as a random walk on the positive half-line. A more in-depth analysis of
this important stochastic process having right-continuous sample paths is provided
in Chapter 5.

Example 4 (Gaussian Processes/Random Fields). Recall that a k-dimensional
Gaussian, or normal, random (column) vector Y with mean (column) vector m ∈ R

k

and a k × k nonsingular covariance (or dispersion) matrix Σ has the density

ϕ(y) = (2π)−
k
2 (DetΣ)−

1
2 exp{−1

2
(y − m)tΣ−1(y − m)} (y ∈ R

k), (1.8)

where the superscript t is used to denote matrix transpose. The characteristic
function of Y is ϕ(ξ) ≡ E exp{iξ t Y } = exp{imtξ − ξ tΣξ}, (ξ ∈ R

k). More
generally, a Gaussian random variable with mean m ∈ R

k and a k × k symmetric
non-negative definite covariance matrixΣ is defined as one having the characteristic
function E exp{iξ t Y } = exp{imtξ − ξ tΣξ}, (ξ ∈ R

k). If Σ is singular, then Y
does not have a density (with respect to Lebesgue measure on R

k). A standard way
to construct such a random variable is to first begin with a vector Z of k i.i.d.
one-dimensional standard Gaussian random variables Z1, Z2, . . . , Zk , each with
mean zero and variance one, Z = (Z1, Z2, . . . , Zk)

t , and define Y = m + AZ ,
where A is a k × k matrix such that AAt = Σ . By the spectral theorem one
may actually find a symmetric matrix A such that AA = Σ . It is simple to check
that if Y = (Y1, . . . ,Yk)

t is a k-dimensional Gaussian random variable with mean
m and covariance matrix Σ , then, for 1 ≤ d < k and any subset (i1, . . . , id)

of (1, . . . , k), (Yi1 , . . . ,Yid )
t is a d-dimensional Gaussian random variable with

mean (mi1 , . . . ,mid )
t and covariance matrix ((σi j ))i, j=i1,...,id , where σi j is the

(i, j)-element of Σ . Consider now the construction of a sequence of Gaussian
random variables {Yn : n = 1, 2, . . . }, i.e., a stochastic process indexed by
Λ = Z+ = {1, 2, . . . } such that for any k-tuple of integers (i1, . . . , ik), 1 ≤ i1 <

i2 < · · · < ik, (Yi1 , . . . Yik )
t is a k-dimensional Gaussian random variable. Suppose

then that {mn : n = 1, 2, . . . } is a sequence of real numbers and, for each pair
(i. j), σi j are real numbers such that ((σi j ))i, j=i1,...,ik , is a k × k symmetric non-
negative definite matrix. It follows from the preceding paragraph that Kolmogorov’s
consistency condition for such a construction of a sequence of Gaussian random
variables {Yn : n = 1, 2, . . . } with means E(Yn) = mn , and covariances σi j =
E(Yi −mi )(Y j −m j ), i, j ≥ 1, is satisfied if and only if the symmetric non-negative
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definiteness holds for all k-tuples (i1, . . . , ik), 1 ≤ i1 < i2 < · · · < ik , for all
k > 1. One general method to construct such a Gaussian process is to consider
an arbitrary (infinite dimensional) matrix A = ((ai j ))i, j∈Z++ , such that each row
belongs to �2(Z++), i.e.,

∑
1≤ j<∞ a2

i j < ∞(∀i = 1, 2, . . . ). Let Z be a sequence
of independent standard Gaussian random variables, Z = (Z1, Z2, . . . , Zn, . . . )

t ,
and m = (m1, . . . ,mn, . . . )

t . Then

Y = m + AZ; Y = (Y1,Y2, . . . ,Yn, . . . )
t ,Yn = mn +

∑

1≤ j<∞
anj Z j , (1.9)

is a Gaussian process (sequence) with mean m and covariance matrix Σ = AAt =
((σi j ))1≤i, j<∞.

An important special case occurs in which the means mn = m1, n ≥ 1, are
constant and σi, j is a function of i − j , say σ(i − j), 1 ≤ j ≤ i . For in this case
one may show (Exercise 3) that the distribution of the process Y = (Y1,Y2, . . . ) is
translation-invariant in the following sense.

Definition 1.2. A stochastic process Y = (Y1,Y2, . . . ) is said to be a sta-
tionary process if its distribution is invariant under translations of the form
(Y1+h,Y2+h, . . . ) for any positive integer h.

Finally, to construct Gaussian processes with values in a multidimensional state
space S one may simply enlarge the index set. For example, if S = R

3 and
Λ = [0,∞), then one may change the index t to (t (1), t (2), t (3)) to list the three
coordinates of the state at time t and prescribe the joint distributions accordingly.

Example 5 (Brownian Motion). One-dimensional standard Brownian motion start-
ing at B0 = 0 ∈ R is a continuous parameter Gaussian process Bt , t ≥ 0, defined on
a probability space (Ω,F , P), having independent mean zero Gaussian increments
Bt−Bs, 0 ≤ s < t over disjoint intervals, with variance t−s and, most importantly,
continuous sample paths t → Bt with probability one; see Figure 1.2. The process
is referred to as a continuous parameter Gaussian process to convey that the finite-
dimensional distribution of (Bt1, . . . , Btm ), 0 ≤ t1 < t2 < · · · < tm,m ≥ 1, is
each a Gaussian distribution. This definition requires a construction and proof of
existence, of which several will appear in this text. With that proviso, the process
Xt = x + μt + σ Bt , t ≥ 0, defines one-dimensional Brownian motion starting
at x ∈ R, drift parameter μ and diffusion coefficient σ 2. More generally, the k-
dimensional standard Brownian motion starting at 0 ∈ R

k is the random vector
(B(1)

t , . . . , B(k)
t ), t ≥ 0, for which the components are independent one-dimensional

standard Brownian motions. The process Xt = x + μt +ΣBt , t ≥ 0, then defines
the k-dimensional Brownian motion starting at x ∈ R

k , with k-dimensional drift
vector μ and (possibly singular) k × k diffusion matrix Σ tΣ .

Remark 1.3. On uncountable index sets such as [0,∞) or [0,∞)d , (d > 1),
the Kolmogorov sigma-field, i.e., the product sigma-field S⊗Λ, is too small to
include sets such as the set of continuous paths or the set of right-continuous
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t

t → Bt(w)

Fig. 1.2 Standard Brownian Motion

paths, and one may seek more regular versions of the process than the coor-
dinate process on S. Indeed, the product sigma-field S⊗Λ only contains events
which are (measurably) determined by countably many coordinates. So this would
exclude measurability of the set of paths required to be continuous at a given
point. The Kolmogorov–Chentsov Theorem (See Chapter 6) gives an important
criterion based on smoothness of moments which yields stochastic processes with
continuous sample paths. Similarly a criterion due to Dynkin3 may be used
to ensure right-continuity of sample paths. An alternative elegant route is via
Doob’s submartingale convergence theorem (See Chapter 13). One may view these
arguments as essentially establishing that the relevant sets (of continuous sample
paths, or right-continuous sample paths) have outer measure one.4

Remark 1.4 (Construction of Brownian Motion by Weak Convergence). There is
another route that may sometimes be used to construct, or prove the existence of,
a stochastic process by the theory of weak convergence on function spaces. An
important example is the construction of Brownian motion Bt , 0 ≤ t < ∞, as a
limit (under weak convergence of probability measures on C[0,∞)) of the simple
symmetric random walk of Example 2 scaled as B(n)

k
n
= Sk/

√
n(k = 0, 1, 2, . . . ),

3See Gikhman and Skorokhod (1969), pp. 159–169.
4See Caratheodory’s extension theorem in BCPT p. 226.
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and B(n)
t linearly interpolated for t ∈ [k/n, (k + 1)/n](k = 0, 1, . . . ); see

Figure 17.1. This so-called functional central limit theorem, or FCLT, is discussed
in detail in Chapter 17. The limiting process inherits the property of independent
increments from that of the simple random walk, and the FCLT shows that the
increments are Gaussian. One may, alternatively, construct such a process using
Kolmogorov’s existence theorem as in Example 2, together with the regularization
due to Kolmogorov and Chentsov as mentioned earlier in Remark 1.3.

Kolmogorov’s, or Tulcea’s, theorem may be used to construct another very
important class of stochastic processes known as Markov processes. We restrict here
to the case of the discrete parameter, i.e., Λ = Z+ = {0, 1, 2, . . . } in the following
example.

Example 6 (Discrete Parameter Markov Processes). We begin this example with a
definition.

Definition 1.3. On a probability space (Ω,F , P), a stochastic process {Xn : n =
0, 1, 2, . . . } having a state space (S,S) is Markov if the conditional distribution of
Xn , given σ {X0, . . . , Xn−1}, is a function of Xn−1, alone.

Denote the conditional distributions on the event [Xn−1 = x] in Definition 1.3,
referred to as (one-step) transition probabilities, by pn(x, dy). That is, for any n ≥
1, B ∈ S , x ∈ S, P(Xn ∈ B|σ {X0, . . . , Xn−1}) = pn(x, B) on the event [Xn−1 =
x]. Here one has (i) x → pn(x, B) is measurable on (S,S) into (R,B) for all
B ∈ S , and(ii) B → pn(x, B) is a probability measure on (S,S) for all x ∈ S .

Unless otherwise stated we will assume that the transition probabilities pn(x, dy)
are the same for all n, and simply denoted p(x, dy). In this case the Markov process
(or its transition probabilities) is said to be time-homogeneous. The transition
probabilities are often said to be stationary in this case too, but this is not to be
confused with a stationary process introduced in Definition 1.2, see Exercise 4.

Given the distribution of X0, sayμ(dx), and a transition probability p(x, dy), the
finite-dimensional probabilities of the process are given by the following successive
steps:

STEP 1

Q0,1,...,n(B0 × B1 × · · · × Bn) ≡ P(X0 ∈ B0, X1 ∈ B1, . . . , Xn ∈ Bn)

= E[E[1B0(X0)1B1(X1) · · · 1Bn−1(Xn−1)1Bn (Xn)|σ {X0, . . . , Xn−1}]]
= E[1B0(X0)1B1(X1) · · · 1Bn−1(Xn−1)g1(Xn−1)],

where g1(Xn−1) = P(Xn ∈ Bn|σ {X0, . . . , Xn−1}) = P(Xn ∈ Bn|σ {Xn−1}). That
is,

g1(x) =
∫

Bn

p(x, dy) = p(x, Bn). (1.10)
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STEP 2

Q0,1,...,n(B0 × B1 × · · · × Bn)

= E[E[1B0(X0)1B1(X1) · · · 1Bn−1(Xn−1)g1(Xn−1)|σ {X0, . . . , Xn−2}]]
= E[1B0(X0)1B1(X1) · · · 1Bn−2(Xn−2)E[1Bn−1(Xn−1)g1(Xn−1)|σ {Xn−2}]]
= E[1B0(X0)1B1(X1) · · · 1Bn−2(Xn−2)g2(Xn−2)],

where

g2(x) =
∫

Bn−1

g1(y)p(x, dy). (1.11)

Proceeding in this manner, one obtains

STEP n − 1

Q0,1,...,n(B0 × B1 × · · · × Bn) = E[1B0(X0)1B1(X1)gn−1(X1)],

where

gn−1(y) =
∫

B2

gn−2(y)p(x, dy)). (1.12)

Finally,

STEP n

Q0,1,...,n(B0× B1×· · ·× Bn) = E[1B0(X0)gn(X0)] =
∫

B0

gn(y)μ(dy), (1.13)

where

gn(x) =
∫

B1

gn−1(y)p(x, dy). (1.14)

To summarize, one has the iterative computation g1(x) = p(x, Bn),

g2(x) =
∫

Bn−1

g1(y)p(x, dy), . . . , gn−1(x) =
∫

B2

gn−2(y)p(x, dy),

gn(x) =
∫

B1

gn−1(y)p(x, dy),

Q0,1,...,n(B0×B1×· · ·×Bn) =
∫

B0

gn(y)μ(dy), (∀B0, B1, . . . , Bn ∈ S), n ≥ 1.

(1.15)
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Conversely, to show that a Markov process exists by specification of an arbitrarily
given transition probability p(x, dy) and an arbitrary initial distribution μ(dx),
one checks that the finite-dimensional distributions Q0,1,...,n(B0, B1, . . . , Bn), as
computed in (1.15) entirely in terms of p(x, dy) and μ(dx), satisfy the Kolmogorov
consistency conditions (c1), (c2) above. For this it is enough to prove that

Q0,1,...,n(B0× B1×· · ·× Bn) = Q0,1,...,n,n+1(B0× B1×· · ·× Bn× S), (1.16)

for all B0, B1, . . . , Bn ∈ S . In this case following (1.15), the iterative computation
of Q0,1,...,n,n+1(B0 × B1 × · · · × Bn × S) yields, denoting the successive iterations
as h1, h2, . . . , hn, hn+1,

h1(x) = p(x, S) ≡ 1, h2(x) =
∫

Bn

h1(y)p(x, dy) = p(x, Bn) = g1(x),

h3(x) =
∫

Bn−1

h2(y)p(x, dy) =
∫

Bn−1

g1(y)p(x, dy) = g2(x), . . . ,

hn(x) =
∫

B2

hn−1(y)p(x, dy) =
∫

B2

gn−2(y)p(x, dy) = gn−1(x),

hn+1(x) =
∫

B1

hn(y)p(x, dy) =
∫

B1

gn−1(y)p(x, dy) = gn(x),

and finally,

Q0,1,...,n+1(B0 × B1 × · · · × Bn × S)

=
∫

B0

hn+1(y)μ(dy) =
∫

B0

gn(y)μ(dy)

= Q0,1,...,n(B0 × B1 × · · · × Bn) (1.17)

establishes consistency (see Remark 1.2). Hence, by Tulcea’s theorem, without any
topological assumption on the product space, (Ω = SZ+ ,F⊗Z+) there is a unique
probability P under which the sequence of coordinate projections {Xn : n ∈ Z+} is
a Markov process with transition probability p(x, dy) and initial distributionμ(dx).

A more enlightening way of stating the (homogeneous) Markov property of a
sequence {Xn : n = 0, 1, 2, . . . } is that the (conditional) distribution of the future
of the process, given its past and present, depends only on the present state. To
state this precisely, let Px denote the distribution of {Xn : n = 0, 1, 2, . . . },
given X0 = x , i.e., the distribution μ of X0 in the construction (1.10)–(1.14)
is the Dirac measure δx . Let Xn+ := {Xn, Xn+1, Xn+2, . . . }, called the after−n
process. Then the conditional distribution of Xn+ given σ {X0, X1, . . . , Xn} (i.e.,
given σ {X0, X1, . . . , Xn}) is PX0 . Here PX0 = Px on the set [X0 = x] (Exercise 1).
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Remark 1.5. As a stochastic process a Markov process is completely determined by
its transition probabilities and its initial distribution. However, given the transition
probabilities, it is not uncommon to also view a Markov process as a family of
stochastic processes indexed by its possible initial distributions.

Example 7 (Continuous Parameter Markov Process). The extension of the defini-
tion (1.3) is as follows.

Definition 1.4. On a probability space (Ω,F , P), a stochastic process {Xt : t ≥
0} having a state space (S,S) is Markov if for each 0 ≤ s < t , the conditional
distribution of Xt , given σ {Xu, u ≤ s}, is a function of Xs , alone.

Now the conditional distributions of Xt on the event [Xs = x] in Definition 1.4,
again referred to as transition probabilities, are denoted by p(s, t; x, dy). That is,
for 0 ≤ s < t , B ∈ S , x ∈ S, P(Xt ∈ B|σ {Xu, u ≤ s}) = p(s, t; x, dy)
on the event [Xs = x] ∈ F . Here one has (i) x → p(s, t; x, B) is measurable
on (S,S) into (R,B) for all B ∈ S , and (ii) B → p(s, t; x, B) is a probability
measure on (S,S) for all x ∈ S . The distribution π(dx) of X0 is referred to as
the initial distribution. The notation in the case of homogeneous (or stationary)
transition probabilities, i.e., p(s, t; x, B) ≡ p(0, t − s; x, B) is a function of
t − s, is abbreviated as p(t − s, x, B) for 0 ≤ s < t . Important simple
examples are one-dimensional standard Brownian motion for which p(t; x, dy) =
(2π t)− 1

2 e− 1
2t (y−x)2 dy, t ≥ 0, x, y ∈ R. and the Poisson process with intensity

λ > 0, for which p(t; i, { j}) = (λt) j−i

( j−i)! e−λt , t ≥ 0, 0 ≤ i ≤ j, i, j ∈ Z+. Each
of these is a stochastic process with stationary, independent increments, from which
the Markov property with homogeneous transition probabilities follows since it is
quite clear that the conditional distribution of the state at time t , given its past and
present states up to time s < t , requires only the distribution at time s to compute.
Specifically, one simply adds a displacement over time s to t , independent of its
state at time s.

While the above examples are tied to additive evolutions, another rich class of
examples arises in connection with multiplicative evolutions. The following is a
fundamentally important class of such processes.

Example 8 (Discrete Parameter Bienaymé–Galton–Watson Branching Process).
While the discrete parameter Bienaymé–Galton–Watson processes are included
within the broader framework of Markov processes, as with the case of random
walks, they also possess a characteristic structure that gives them a special role
in stochastic analysis and modeling. We consider a discrete parameter stochastic
process Y0,Y1, . . . with state space Z+ defined as follows; also see Figure 1.3.
The population size is initially given by a non-negative random variable Y0. Let
p j , j = 0, 1, 2, . . . be a probability mass function, i.e., p j ≥ 0,

∑
j≥0 p j = 1.

Then the first generation population size is given by Y1 = 0 if Y0 = 0, else
Y1 = ∑Y0

j=1 N0, j , where N0,1, N0,2, . . . , is an i.i.d. sequence distributed according
to the offspring distribution p j , j ≥ 0, independently of Y0. From here the definition
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Y0 = 1

Y1 = 3

Y2 = 3

Y3 = 5

N01 = 3, N11 = 2, N12 = 0, N13 = 1, N21 = 0, N22 = 2, N23 = 3

Fig. 1.3 Branching Genealogy

of Y2 is recursive, with the same rule applied to Y1 in place of Y0, and i.i.d.
N1,1, N1,2, . . . , distributed as p j , j ≥ 0, independently of N0,1, N0,2, . . . , and Y0.
More generally, Yn+1 = 0 if Yn = 0, else

Yn+1 =
Yn∑

j=1

Nn, j , (1.18)

where Nn,1, Nn,2, . . . is an i.i.d. sequence distributed according to p j , j ≥ 0,
independently of Nm,1, Nm,2, . . . , and Y0, for 0 ≤ m ≤ n − 1, n ≥ 1.

As far as first principles go, one may observe that if there is a finite mean number
of offspring μ = ∑∞

j=0 j p j , then one has EYn+1 = μEYn, n = 0, 1, 2, . . . . In
particular, the mean population sizes μn, n ≥ 1, grow or decay according to μ > 1
or μ < 1, respectively. The case μ = 1 is critical in the sense that the mean
population size remains constant over time. For non-negative integer-valued random
variables Y the simple inequality (Exercise 8),

P(Y > 0) ≤ EY (1.19)

can be quite useful along the following lines: If μ < 1, then

∞∑

n=1

P(Yn > 0) ≤
∞∑

n=1

EYn ≤
∞∑

n=1

μn <∞. (1.20)
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It follows from the Borel–Cantelli lemma that with probability one Yn = 0 for all
but finitely many n. That is, extinction is certain to occur, and the total progeny∑∞

n=0 Yn is almost surely finite; see Exercise 9 for a simple extension of this to
non-homogeneous branching. The probability of extinction will be more generally
computed in Chapter 9 of the present text for the (homogeneous) Bienaymé–
Galton–Watson process.

The previous definition clearly requires a large product space to define the infinite
sequences of sequences of i.i.d. random variables. An alternative approach is to
exploit the previous construction of a Markov chain with initial distribution of Y0
and one-step transition probabilities p(i, { j}) = p∗i ({ j}), j = i, i + 1, . . . , where
p∗i denotes the i-fold convolution of p j , j ≥ 0, with p∗0({ j}) = δ0({ j}), p∗1

j =
p j , and p∗(i+1)

j = ∑ j
k=0 p∗i

j−k pk for j, i = 0, 1, . . . . A third approach involves
coding the entire genealogy of the branching process as a random tree graph as
depicted in Figure 1.3. This approach will be developed in later chapters devoted to
naturally occurring functions of the branching genealogy.

Queuing theory concerns another class of stochastic processes that naturally arise
in a variety of settings as illustrated in the next example.

Example 9 (Discrete Parameter Queuing Process). Consider a server that can
serve one customer per unit time, but with a random number Xn, n = 1, 2, . . . , of
new customer arrivals during the successive service periods. Assume that X1, X2 . . .

are i.i.d. non-negative integer-valued random variables with distribution p j , j ≥ 0.
Then the number Cn of customers in the system at end of n-th service times
n = 1, 2, . . . may be expressed as

Cn = Xn1[Cn−1 = 0] + (Cn−1− 1+ Xn)1[Cn−1 ≥ 1], n = 1, 2, . . . . (1.21)

Alternatively, C0,C1, . . . may be more simply defined as a Markov chain with
initial distribution of C0, assumed independent of Xn, n ≥ 1, and one-step transition
probabilities p(0, j) = p j , j = 0, 1, . . . , p(i, j) = p j−i+1, j = i − 1, i, i +
1 . . . , i ≥ 1.

Example 10 (Martingale Processes). Martingales5 are defined by an important
and essential “statistical dependence”property that can be further exploited in the
analysis of Markov and other processes that represent observed models of evolution
of random phenomena with time. The defining property requires that predictions
of a future state at time t , say, by its conditional expectation on past states up to
time s < t , be precisely the state at time s. A familiar metaphor is The prediction
of tomorrow’s weather, given the past, is today’s weather. In gambling contexts it
would be viewed as a fairness property, while in analysis and PDEs its counterpart
resembles a harmonic function property. The previous examples of martingales
provide a number of important martingale processes, see Exercise 10, ranging from
(i) mean zero random walks, (ii) standard Brownian motion, (iii) a Poisson process

5The theory of martingales is primarily due to Doob (1953).
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centered on its mean, and (iv) the critical branching process. However, the breadth
and significance of martingale theory far exceeds this brief list.

Exercises

1. (a) Use Kolmogorov’s existence theorem on a Polish state space to prove that
the distribution of a process (X0, X1, . . . , Xn, . . . ) is determined by the
distributions of (X0, X1, . . . , Xn) for n = 0, 1, 2, . . . (See Remark 1.3);
and use Tulcea’s theorem to show that this holds for Markov processes on
arbitrary state spaces.

(b) Prove that the Markov property (Definition 1.3) implies that the con-
ditional distribution of (Xn, Xn+1, . . . , Xn+m), given σ {X0, . . . , Xn}, is
the same as the distribution of (X0, X1, . . . , Xm), starting at Xn , that is,
the latter distribution is that of (x, X1, . . . , Xm) on the set [Xn = x]
[Hint: Use successive conditioning with respect to σ {X0, . . . , Xn+m−1},
σ {X0, . . . , Xn+m−2}, . . . , σ {X0, . . . , Xn}.]

(c) Show that the conditional distribution of the after−n process Xn+ =
(Xn, Xn+1, . . . ), given σ {X0, . . . , Xn}, is PXn (i.e., Px on [Xn = x]).
[Hint: Use (b).]

2. Show that for fixed t > 0, N (t) in Example 3 has a Poisson distribution with
mean θ t .

3. Prove that a Gaussian process with constant means and covariances σi j = σ(i−
j), i, j ≥ 1, is a stationary process in the sense of Definition 1.2.

4. Suppose that the transition probabilities p(x, dy) and initial distribution μ(dx)
of a Markov process Y have the invariance property that

∫
S p(x, B)μ(dx) =

μ(B) for all B ∈ S . Show that Y is a stationary process in the sense of
Definition 1.2.

5. Verify the discrete parameter Markov property for the coordinate projection
process in Example 6 by comparing the two indicated conditional distributions
of Xn+1.

6. (a) Show that a process having independent increments is a Markov process.
(b) Verify the continuous parameter Markov property of Brownian motion and

the Poisson process.

7. Verify the computation of the mean population size for the Bienaymé–Galton–
Watson process in Example 8.

8. Verify the inequality (1.19) for non-negative integer random variables.
9. (Inhomogeneous Bienaymé–Galton–Watson branching process) Suppose that

the offspring distribution for the Bienaymé–Galton–Watson process is modified
to be dependent upon the generation. That is, replace p j , j = 0, 1, 2, . . . by

p(n)j , j = 0, 1, 2, . . . , n = 0, 1, 2, . . . , as the offspring distribution for particles



16 1 What Is a Stochastic Process?

in the n-th generation. Let μn = ∑∞
j=1 j p(n)j denote the mean number of

offspring of a single particle in the n-th generation. Show that extinction6 is
certain, i.e., with probability one, Yn = 0 eventually for all n sufficiently large,
if
∑∞

n=1
∏n

j=1 μ j <∞.
10. Verify the indicated conditional expectations for the martingale property in each

of the following examples.

(i) For the random walk with mean zero displacements, show that
E(Sn+1|σ {S j , j ≤ n}) = Sn, n = 0, 1, 2, . . . .

(ii) For the standard Brownian motion, show that E(B(t)|σ {B(u), u ≤ s}) =
B(s), s ≤ t .

(iii) For the homogeneous Poisson process with intensity parameter θ > 0,
show that E(N (t)|σ {N (u), u ≤ s}) = N (s), s ≤ t

(iv) For the discrete parameter Bienaymé–Galton–Watson process with (criti-
cal) mean offspring μ = 1, show that E(Yn+1|σ {Y j , j ≤ n}) = Yn, n =
0, 1, 2, . . .

6Under some extra conditions on the offspring distribution, it is shown in Agresti (1975) that
the condition

∑∞
n=0(EYn)

−1 = ∞ is both necessary and sufficient for extinction in the non-
homogeneous case.



Chapter 2
The Simple RandomWalk I: Associated
Boundary Value Distributions,
Transience, and Recurrence

The simple random walk is the generic example of a discrete time temporal
evolution on an integer state space. In this chapter it is defined and simple
combinatorics are provided in the computation of its distribution. Two
possible characteristic long-time properties, (point) recurrence and transience,
are identified in the course of the analysis. Recurrence is a form of “stochastic
periodicity” in which the process revisits a state (or arbitrarily small neigh-
borhood) infinitely often, while transience refers to the phenomena in which
there are at most finitely many returns.

The simple random walk was introduced in Chapter 1, Example 2. Here we consider
some of its properties in detail. Think of a particle moving randomly among the
integers according to the following rules. At time n = 0 the particle is at the origin.
Suppose that Xn denotes the displacement of the particle at the nth step from its
position Sn−1 at time n − 1, where {Xn}∞n=1 is an i.i.d. sequence with P(Xn =
+1) = p, P(Xn = −1) = q = 1− p for each n ≥ 1. The position process {Sn}∞n=0
is then given by

Sn := X1 + · · · + Xn, S0 = 0. (2.1)

The stochastic process {Sn : n = 0, 1, 2, . . .} is called the simple random walk. The
related process Sx

n = Sn + x , n = 0, 1, 2, . . . is called the simple random walk
starting at x .

The simple random walk is often used by physicists as an approximate model
of the fluctuations in the position of a relatively large solute molecule immersed
in a pure fluid. According to Einstein’s diffusion theory, the solute molecule gets
kicked around by the smaller molecules of the fluid whenever it gets within the
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range of molecular interaction with fluid molecules. Displacements in any one
direction (say, the vertical direction) due to successive collisions are small and taken
to be independent. We shall frequently return to this physical model. One may also
think of Xn as a gambler’s gain in the nth game of a series of independent and
stochastically identical games: a negative gain means a loss. Then Sx

0 = x is the
gambler’s initial capital, and Sx

n is the capital, positive or negative, after n plays of
the game.

The first problem is to calculate the distribution of Sx
n at a fixed time n. To

calculate the probability of [Sx
n = y], count the number u of +1’s in a path

from x to y in n steps. Since n − u is then the number of −1’s, one must have
u− (n− u) = y− x , or u = (n+ y− x)/2. For this, n and y− x must be both even
or both odd, and |y − x | ≤ n. Hence

P(Sx
n = y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( n
n+y−x

2

)

p(n+y−x)/2q(n−y+x)/2

if |y − x | ≤ n, and y − x, n have the same parity

0 otherwise.

(2.2)

Again one may note that the existence of the simple random walk {Sn}∞n=0 rests
on the existence of a sequence of i.i.d. Bernoulli ±1-valued random variables
{Xn}∞n=1, for a given probability parameter p ∈ [0, 1], defined on a probability
space (Ω,F , P); see Examples 1, 2 of Chapter 1.

The simple random walk is an example of a Markov chain of great importance.
Markov chains on countable state spaces and, more generally, Markov processes on
general state spaces, were defined in Chapter 1, along with examples.

As already hinted in Chapter 1, in view of the central limit theorem, a plot of the
sample paths of the simple symmetric random walk on the time scale 0, 1

n ,
2
n , . . .

with spatial increments ±n− 1
2 is, for large n, indistinguishable from a continuous

space-time process distributed as Brownian motion. This latter process and its
connection to random walk will be treated in-depth in forthcoming chapters.

We next consider the asymptotic behavior of the simple random walk as time
progresses. Let us view the manner in which a particle escapes from an interval. Let
T x

y denote the first time that the process starting at x reaches y, i.e.,

T x
y := inf{n ≥ 0 : Sx

n = y}. (2.3)

To avoid trivialities, assume 0 < p < 1. For integers c and d with c < d, denote

ϕ(x) := P(T x
d < T x

c ). (2.4)

In other words, ϕ(x) is the probability that the particle starting at x reaches d before
it reaches c. Alternatively it is the probability of being at “d” upon reaching the
boundary {c, d} of the (discrete) interval denoted c, d := {c, c + 1, . . . , d − 1, d}
when started at x ∈ c, d.
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Proposition 2.1 (Boundary Distribution Under Nonzero Drift). Assume 0 < p <

1, p �= q. Let c, d ∈ Z, c < d. Then

P(T x
d < T x

c ) =
1− (q/p)x−c

1− (q/p)d−c
for c ≤ x ≤ d, p �= q,

P(T x
c < T x

d ) =
1− (p/q)d−x

1− (p/q)d−c
for c ≤ x ≤ d, p �= q.

Proof. Since in one step the particle moves to x + 1 with probability p, or to x − 1
with probability q, one has (Exercise 6)

ϕ(x) = pϕ(x + 1)+ qϕ(x − 1) (2.5)

so that

ϕ(x + 1)− ϕ(x) = q

p
[ϕ(x)− ϕ(x − 1)], x ∈ c + 1, d − 1

ϕ(c) = 0, ϕ(d) = 1. (2.6)

Thus, ϕ(x) is the solution to the discrete boundary value problem (2.6). For p �= q,
Eq. (2.6) yields

ϕ(x) =
x−1∑

y=c

[ϕ(y + 1)− ϕ(y)] =
x−1∑

y=c

(
q

p

)y−c

[ϕ(c + 1)− ϕ(c)]

= ϕ(c + 1)
x−1∑

y=c

(
q

p

)y−c

= ϕ(c + 1)
1− (q/p)x−c

1− q/p
. (2.7)

To determine ϕ(c + 1) take x = d in (2.7) to get

1 = ϕ(d) = ϕ(c + 1)
1− (q/p)d−c

1− q/p
.

Then

ϕ(c + 1) = 1− q/p

1− (q/p)d−c

so that the first relation holds. The second follows by symmetry or by the same
general solution method. �
Now let

ψ(x) := P(T x
c < T x

d ). (2.8)
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Note that ϕ(x) + ψ(x) = 1, proving that the particle starting in the interior of c, d
will eventually reach the two-sided boundary (i.e., either c or d) with probability 1.
For semi-infinite intervals one obtains the following in the limits as either d → ∞
or c →−∞.

Corollary 2.2. Assume 0 < p < 1, p �= q. Let c < x be integers.

P({Sx
n }∞n=0 will ever reach c) = P(T x

c <∞) =
⎧
⎨

⎩

(
q
p

)x−c
, if p > 1

2

1, if p < 1
2 ,

and for integers x < d,

P({Sx
n }∞n=0 will ever reach d) = P(T x

d <∞) =
⎧
⎨

⎩

1, if p > 1
2(

p
q

)d−x
, if p < 1

2 .

Remark 2.1. As one might guess as the result of the informal remarks made earlier
connecting simple random walk and Brownian motion via space-time scaling limits,
in the case of Brownian motion the linear second order boundary value difference
equations will take the form of differential equations.

Observe that one gets from these calculations the distribution function for the
extremes Mx = supn Sx

n and mx = infn Sx
n (Exercise 9). Note also that by the strong

law of large numbers,

P

(
Sx

n

n
= x + Sn

n
→ p − q as n →∞

)

= 1. (2.9)

Hence, if p > q, then the random walk drifts to +∞ (i.e., Sx
n → +∞) with

probability 1. In particular, the process is certain to reach d > x if p > q. Similarly,
if p < q, then the random walk drifts to −∞ (i.e., Sx

n → −∞), and starting at
x > c the process is certain to reach c if p < q. In either case, no matter what the
integer y is,

P(Sx
n = y i.o.) = 0, if p �= q, (2.10)

where i.o. is shorthand for “infinitely often.” For if Sx
n = y for integers n1 < n2 <

· · · through a sequence going to infinity, then

Sx
nk

nk
= y

nk
→ 0 as nk →∞,

the probability of which is zero by (2.9).
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Definition 2.1. A state y for which (2.10) holds with x = y is called transient. If
all states are transient, then the stochastic process is said to be a transient process.

Now let us turn to the symmetric case.

Proposition 2.3 (Boundary Distribution under Zero Drift). Assume p = q = 1/2
and let c ≤ x ≤ d be integers.

P(T x
d < T x

c ) =
x − c

d − c
, x ∈ c, d, p = q = 1

2
,

P(T x
c < T x

d ) =
d − x

d − c
, x ∈ c, d, p = q = 1

2
.

Proof. In the case p = q = 1
2 , according to the boundary value problem (2.6), the

graph of ϕ(x) is along the line of constant slope between the points (c, 0) and (d, 1).
Thus the first relation follows. The second relation then follows by a symmetry
argument or by the same method of calculation. �
Again we have

ϕ(x)+ ψ(x) = 1. (2.11)

Corollary 2.4. Let p = q = 1/2. For integers x, y

P(Sx
n = y i.o.) = 1. (2.12)

Proof. Given any initial position x > c,

P({Sx
n }∞n=0 will eventually reach c)

= P(T x
c <∞)

= lim
d→∞ P({Sx

n }∞n=0 will reach c before it reaches d)

= lim
d→∞

d − x

d − c
= 1. (2.13)

Similarly, whatever the initial position x < d,

P({Sx
n }∞n=0 will eventually reach d) = P(T x

d <∞) = lim
c→−∞

x − c

d − c
= 1.

(2.14)
Thus, no matter where the particle may be initially, it will eventually reach any given
state y with probability 1. After having reached y for the first time, it will move to
y+ 1 or to y− 1. From either of these positions the particle is again bound to reach
y with probability 1, and so on. (Exercise 10). �
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Remark 2.2. Although the argument conditioning on the first step X1 of the random
walk used to derive the crucial equation (2.5) is correct (Exercise 6), such arguments
are more generally justified by the so-called strong Markov property discussed in
Chapter 7.

Definition 2.2. A state y for which (2.12) holds with x = y is called recurrent. If
all states are recurrent, then the stochastic process is called a recurrent process.

We conclude this chapter with the following simple observation with regard to
the time ηx of the first return to x obtained by conditioning on the first step.

Proposition 2.5. Define ηx := inf{n ≥ 1 : Sx
n = x}. Then, P(ηx < ∞) =

2 min(p, q).

Proof. Suppose that p > q. Conditioning on X1 and using Corollary 2.2 yields

P(ηx <∞) = EP(ηx <∞|X1)

= P(T x+1
x <∞)p + P(T x−1

x <∞)q

= q

p
p + 1q = 2q = 2 min(p, q).

The cases p > q and p = q are handled similarly using Corollary 2.2 and
Corollary 2.4, respectively. �
Corollary 2.6. In the asymmetric case p �= q, the simple random walk is transient.

Proof. This follows directly from Proposition 2.5 and Corollary 2.2. �

Exercises

1. Let {Sx
n }∞n=0 be the simple random walk starting at x ∈ Z. Show that for

0 = n0 < n1 < · · · < nm, P
(
Sx

0 = x, Sx
n1
= y1, . . . , Sx

nm
= ym

) = p(n1)
xy1 ·

p(n2−n1)
y1 y2 . . . p(nm−nm−1)

ym−1 ym where

p(k)ab =
⎧
⎨

⎩

(
k

k+b−a
2

)

p
k+b−a

2 q
k−b+a

2 , |b − a| ≤ k, a, b have same parity

0 else.

2. (Lazy Random Walk) The lazy simple random walk is a modification of the
simple random walk with displacement probabilities p, 1 − p in which the
displacements are allowed to be zero with positive probability θ ∈ (0, 1 − p).
That is {Xn : n ≥ 1} is an i.i.d. sequence with P(Xn = 1) = p, P(Xn =
−1) = 1 − p − θ, P(Xn = 0) = θ, n = 1, 2, . . . , and Sx

0 = x ∈ Z, Sx
n =

x + X1 · · · + Xn, n ≥ 1. Calculate P(Sx
n = y) for the lazy simple random
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walk. (Notice that for 0 < θ < 1 one avoids the parity issues intrinsic to simple
random walk.)

3. Show that the simple random walk Sx = {Sx
0 , Sx

1 , . . . } on the integers is a
Markov chain and identify the the initial distribution and transition probabili-
ties.

4. (Continuous Time Simple Random Walk) Suppose that {Sx
n : n = 0, 1, 2, . . . }

and {Nt : t ≥ 0} are, respectively, a simple random walk on Z starting at x
with parameter 0 ≤ p ≤ 1, and an independent Poisson process on [0,∞) with
parameter λ > 0. (a) Show that two processes may be defined on a common
probability space (Ω,F , P) as independent stochastic processes. (b) Define a
continuous time simple random walk starting at x on Z by X x

t = Sx
Nt
, t ≥ 0.

Calculate P(X x
t = y), y ∈ Z. (c) Fix 0 = t0 < t1 < · · · < tm, y1, . . . , ym ∈ Z

and calculate P({ω ∈ Ω : X x
t j
(ω) = y j }) for y j ∈ Z, j = 0, . . . ,m. (d)

Calculate EX x
t , Cov(X x

s , X x
t ).

5. Suppose that G is an additive abelian group with a topology that makes
(x, y)→ x + y a continuous map from G × G to G for the product topology
on G×G. Such a group is said to be a topological abelian group. (i) Formulate
a definition of a random walk on G, with its Borel sigma-field, and express the
distribution of Sn in terms of a convolution of the distributions of increments
Xn = Sn − Sn−1, n ≥ 1. (ii) Characterize all the random walks on the
group G = {0, 1}, with addition modulo two, as two-state Markov chains.
(iii) In the remaining parts (a)–(d) of this exercise, consider a random walk
Sn, n ≥ 1, S0 = 0 on the additive group G = R having i.i.d. increments
Xn = Sn − Sn−1.

(a) Assume X1 is Gaussian with mean zero and unit variance. Show that 0 is
not (pointwise) recurrent, i.e., P(Sn = 0) = 0n ≥ 1, while for ε > 0, but
for any interval containing (−ε, ε) about 0, one has interval recurrence
P(Sn ∈ (−ε, ε)i.o.) = 1. [Hint: Use the Chung–Fuchs recurrence
criteria1]

(b) Show that if E|X1| < ∞, and EX1 = 0 then 0 is interval-recurrent. [Hint:
Apply the Taylor expansion2 and Chung–Fuchs criteria.]

(c) Consider a random walk on R having i.i.d. symmetric stable3 increments
with characteristic function ϕ(ξ) = Eeiξ X1 = e−|ξ |α with 0 < α < 2.
Show that P(Sn ∈ (−ε, ε)i.o.) = 1 for 1 ≤ α ≤ 2. [Hint: 1

1−ϕ(ξ) ∼ 1
|ξ |α .]

(d) Give an example of a random walk on R for which 0 is interval-recurrent,
and for which the increments are symmetrically distributed but whose
mean does not exist. [Hint: Consider α = 1, noting that each X j has the
symmetric Cauchy distribution.]

1See BCPT p. 124, Cor. 6.15.
2See BCPT p. 125, Lemma 3.
3See BCPT p. 129.
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6. Show that the probabilities ϕ(x) = P(T x
d < T x

c ), x ∈ Z, satisfy the difference
equation (2.5), ϕ(x) = pϕ(x + 1) + qϕ(x − 1); c < x < d. [Hint: The
conditional distribution of the sequence (x + X1, x + X1+ X2, . . . ), given X1,
is the same as the distribution of a random walk starting at x + X1.]

7. (a) Show that for a finite state Markov chain at least one state must be recurrent.
(b) Give an example of a Markov chain for which all states are transient.

8. Verify the details for the proof of the corollary to Proposition 2.1
9. Calculate P(Mx > y) and P(mx ≤ y) for p �= 1

2 , where Mx = supn Sx
n ,

mx = infn Sx
n , for the simple asymmetric random walk starting at x .

10. Show that P(Sx
n = y i.o.) = 1 for the simple symmetric random walk {Sx

n }∞n=0.
11. Suppose that two particles are initially located at points x and y, respectively.

At each unit of time a particle is selected at random, both being equally likely to
be selected, and is displaced one unit to the right or left with probabilities p and
q, respectively. Calculate the probability that the two particles will eventually
meet.

12. (A Gambler’s Ruin) A gambler wins or loses 1 unit with probabilities p and
q = 1 − p, respectively, at each play of a game. The gambler has an initial
capital of x units and the adversary has an initial capital of d > x units. The
game is played repeatedly until one of the players is broke.

(i) Calculate the probability that the gambler will eventually go broke.
(ii) What is the expected duration of the game in the case p = q?

13. (Range of Random Walk) Let {Sn}∞n=0 be a simple random walk starting at 0 and
define the range Rn in time n by Rn = #{S0 = 0, S1, . . . , Sn}. Rn represents
the number of distinct states4 visited by the random walk in time 0 to n.

(i) Show that E(Rn/n) → |p − q| as n → ∞. [Hint: Write Rn = 1 +∑n
k=1 1[Sk �= S j , j = 0, . . . , k − 1] and reduce the problem to the

calculation of limn→∞ P(Sn − S j �= 0, j = 0, 1, . . . , n − 1) in terms
of an equivalent probability for the successive partial sums of the i.i.d.
displacements expressed from time n backward.]

(ii) Verify that Rn/n → 0 in probability as n → ∞ for the symmetric case
p = q = 1

2 . [Hint: Use (i) and the Markov inequality.]

14. Let {Sn}∞n=0 be a simple random walk starting at 0. Show the following.

(i) If p �= 1
2 , then

∑∞
n=0 P(Sn = 0) = (1 − 4pq)−1/2 = |p − q|−1.

[Hint: Apply the Taylor series generalization of the Binomial theorem to∑∞
n=0 zn P(Sn = 0) noting that

(
2n

n

)

(pq)n = (−1)n(4pq)n
(− 1

2
n

)

,

4This exercise treats a very special case of a more elaborate contemporary theory of random walk
on graphs initiated by Dvoretsky and Erdos (1951).
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where
(x

n

) := x(x − 1) · · · (x − n + 1)/n! for x ∈ R, n = 0, 1, 2, . . . ].
(ii) Give another proof of the transience of 0 using (ii) for p �= 1

2 . [Hint: Use
the Borel–Cantelli Lemma.]

15. (A Geometric Random Walk) Let S0 > 0 denote today’s price of a certain stock
and suppose that the yields defined by Yn = (Sn − Sn−1)/Sn−1, n = 1, 2, . . . ,
on the successive prices S1, S2, . . . are i.i.d. with values in (−1,∞). That is,

Sn =
n∏

j=1

(1+ Y j ) · S0, n = 1, 2, . . . .

(i) Show that Sn → 0 a.s. if EY1 < 0.
(ii) Show that Sn → 0 a.s. if EY1 = 0 and P(Y1 > 0) > 0.

(iii) Give an example with EY j > 0 such that lim supn Sn = +∞,
lim infn Sn = 0. [Hint: Consider Y j = eZ j − 1 with Z1, Z2, . . . i.i.d.
symmetric Bernoulli ±1-valued.]



Chapter 3
The Simple RandomWalk II: First
Passage Times

In view of recurrence vs transience phenomena, the time T 0
y to reach a

fixed integer state y starting at, say, the origin, may or may not be a finite
random variable. Nevertheless, one may consider the possibly defective
distribution of T 0

y . An important stochastic analysis tool, referred to as the
reflection principle, is used to make this calculation. With this analysis another
important refinement of the recurrence property is identified for symmetric
random walk, referred to as null recurrence, showing that while the walker
is certain to reach y, the expected time ET 0

y = ∞. This refinement involves
an application of Stirling’s asymptotic formula for n!, for which a proof is
also provided. An extension to random walks on the integers that do not skip
integer states to the left is also given.

Consider the random variable Ty := T 0
y representing the first time the simple

random walk starting at zero reaches the level (state) y. We will calculate the
distribution of Ty by means of an analysis of the sample paths of the simple random
walk. Let FN ,y := [Ty = N ] denote the event that the particle reaches state y for
the first time at the N th step. Then,

FN ,y = [Sn �= y for n = 0, 1, . . . , N − 1, SN = y]. (3.1)

Note that “SN = y” means that there are (N + y)/2 plus 1’s and (N − y)/2 minus
1’s among X1, X2, . . . , X N ; see (2.2). Therefore, we assume that |y| ≤ N and
N + y is even. Now there are as many paths leading from (0, 0) to (N , y) as
there are ways of choosing (N + y)/2 plus 1’s among X1, X2, . . . , X N , namely
(

N
N+y

2
). Each of these choices has the same probability of occurrence, specifically

p(N+y)/2q(N−y)/2. Thus,
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P(FN ,y) = Lp(N+y)/2q(N−y)/2, (3.2)

where L is the number of paths from (0, 0) to (N , y) that do not touch or cross the
level y prior to time N . To calculate L consider the complementary number L ′ of
paths that do reach y prior to time N ,

L ′ =
( N

N+y

2

)

− L . (3.3)

First consider the case of y > 0. If a path from (0, 0) to (N , y) has reached y prior
to time N , then either (a) SN−1 = y+1 or (b) SN−1 = y−1 and the path from (0, 0)
to (N − 1, y− 1) has reached y prior to time N − 1. The contribution to L ′ from (a)

is

(
N−1
N+y

2

)

. We need to calculate the contribution to L ′ from (b) (Figure 3.1).

Proposition 3.1 (A Reflection Principle). Let y > 0. The collection of all paths
from (0, 0) to (N − 1, y − 1) that touch or cross the level y prior to time N − 1 is
in one-to-one correspondence with the collection of all possible paths from (0, 0) to
(N − 1, y + 1).

Proof. Given a path γ from (0, 0) to (N − 1, y + 1), there is a first time τ at which
the path reaches level y. Let γ ′ denote the path which agrees with γ up to time τ but
is thereafter the mirror reflection of γ about the level y Then γ ′ is a path from (0, 0)
to (N −1, y−1) that touches or crosses the level y prior to time N −1. Conversely,
a path from (0, 0) to (N − 1, y − 1) that touches or crosses the level y prior to time

0 1 2 3 4 5 6 7 8 9 10

y − 1

y

y + 1

=N − 1 n

γn

Fig. 3.1 Reflection Principle
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N − 1 may be reflected to get a path from (0, 0) to (N − 1, y + 1). This reflection
transformation establishes the one-to-one correspondence. �
Proposition 3.2.

P(Ty = N ) = |y|
N

( N
N+y

2

)

p(N+y)/2q(N−y)/2 = |y|
N

P(SN = y) (3.4)

for N = |y|, |y| + 2, |y| + 4, . . . .

Proof. It follows from the reflection principle that the contribution to L ′ from (b) is(
N−1
N+y

2

)

. Hence

L ′ = 2

( N−1
N+y

2

)

. (3.5)

Therefore, by (3.3), (3.2),

P(Ty = N )

= P(FN ,y) =
[( N

N+y

2

)

− 2

( N−1
N+y

2

)]

p(N+y)/2q(N−y)/2

= y

N

( N
N+y

2

)

p(N+y)/2q(N−y)/2 for N≥y, y+N even, y > 0. (3.6)

To calculate P(Ty = N ) for y < 0, simply relabel +1 as −1 and −1 as +1.
Using this new code, the desired probability is given by replacing y by −y and
interchanging p, q in (3.6), i.e.,

P(Ty = N ) = − y

N

( N
N−y

2

)

q(N−y)/2 p(N+y)/2.

Thus, for all integers y �= 0, one obtains the asserted formula. �
In the special case p = q = 1/2 the first passage distribution takes the form

P(Ty = N ) = |y|
N

( N
N+y

2

)
1

2N
for N = |y|, |y| + 2, |y| + 4, . . . . (3.7)

Corollary 3.3. For simple random walk with 0 < p < 1, assuming y and N have
the same parity,
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P(Ty = N |SN = y) = |y|
N
. (3.8)

Another application of the reflection principle, sometimes referred to as the
method of images in this context, is to determine the distribution of a simple random
walk in the presence of boundaries. Here is an example to illustrate ideas; see
Exercise 1 for additional examples. In Chapter 18 a number of additional interesting
identities are given as a consequence of reflection, translation, and symmetry
transformations.

Corollary 3.4 (Method of Images). Fix a positive integer b.

i. Define Sn = Sn∧T−b , n = 0, 1, . . . , where Sn, n ≥ 0, is simple symmetric
random walk starting at 0 and T−b the first passage time to −b. Then,

P(S2n = 0) = P(S2n = 0)− P(S2n = 2b), n ≥ 1.

ii. Fix a positive integer a. Then,

P(S2n = 0, Ta ≤ 2n) = P(S2n = 2a)− 2P(S2n = 2b + 2a), n ≥ 1.

iii. Define Sn = Sn∧T−b∧Ta . Then,

P(S2n = 0) = P(S2n = 0)− P(S2n = 2a)− P(S2n = −2b)

+2
∞∑

k=1

{P(S2n = k(2a + 2b))− P(S2n = 2a + k(2a + 2b))},

and in the case a = b,

P(S2n = 0) =
∞∑

k=−∞
{P(S2n = 4ka)− P(S2n = 2a + 4ka)}.

Proof. It is suggested to sketch sample paths as an aid to following the various
reflections. (i) One has P(S2n = 0) = P(S2n = 0, T−b > 2n) = P(S2n =
0) − P(S2n = 0, T−b ≤ 2n) = P(S2n = 0) − P(S2n = −2b) = P(S2n =
0) − P(S2n = 2b), where the second to last equality is obtained by reflection of
the random walk paths about y = −b, and the last equality uses symmetry of S2n

about 0.
Part (ii) is proven similarly but uses double reflections. Note that existence of

double reflections is assured because the boundaries and boundary crossings reflect
with the paths after the first single reflection. They are invertible by reversing the
order of reflections.
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P(S2n = 0, Ta ≤ 2n)

= P(S2n = 0, Ta ≤ 2n, T−b > 2n)

= P(S2n = 0, Ta ≤ 2n)− P(S2n = 0, Ta ≤ 2n, T−b ≤ 2n)

= P(S2n = 0, Ta ≤ 2n)− P(S2n = 0, T−b ≤ 2n, Ta < T−b)

−P(S2n = 0, Ta ≤ 2n, T−b < Ta)

= P(S2n = 2a)− P(S2n = 2b + 2a)

−P(S2n = −2b − 2a)

= P(S2n = 2a)− 2P(S2n = 2b + 2a),

where the first term is by reflection about y = a and the second term, for paths ω
with Ta(ω) < T−b(ω), ω0 = ω2n = 0, is by use of double reflections from y = a
followed by a reflection of this path about y = 2a+b at (T ′2a+b, 2a+b) to define ω′
such that ω′0 = 0, ω′2n = 2a+2b. The third term, for T−b(ω) < Ta(ω), is by double
reflections about y = −b at (T−b,−b) followed by a reflection of this path about
y = −2b−a at (T ′−2b−a,−2b−a), to define ω′ such that ω′0 = 0, ω′2n = −2a−2b
The final formula follows by symmetry of S2n about 0.

Finally, for (iii) note that

P(S2n = 0) = P(S2n = 0, T−b > 2n, Ta > 2n)

= P(S2n = 0, Ta > 2n)− P(S2n = 0, Ta > 2n, T−b ≤ 2n)

= P(S2n = 0)− P(S2n = 2a)− P(S2n = 0, T−b ≤ 2n)

+P(S2n = 0, Ta ≤ 2n, T−b ≤ 2n)

= P(S2n = 0)− P(S2n = 2a)− P(S2n = 2b)

+P(S2n = 0, T−b ≤ 2n, Ta ≤ 2n). (3.9)

The first difference incorporates the k = 0 term of the asserted series to be proved.
The problem is to calculate P(S2n = 0, T−b ≤ 2n, Ta ≤ 2n). For this first note that,
as in part (ii), a path ω such that ω0 = 0, ω2n = 0, T−b(ω) ≤ 2n, Ta(ω) ≤ 2n
reflects across y = a at (Ta, a) to a path that must touch y = 2a + b at
(T2a+b, 2a + b). The second reflection yields a path ω′0 = 0, ω′2n = 2a + 2b.
This doubly reflected path ω′ may or may not touch the next level y = 3a + 2b
(k = 1). Thus, there is a maximal k ≥ 1 such that the iterated double reflections
yield a path ω′ such that (i) If T−b(ω) < Ta(ω), then ω′0 = 0, ω′2n = k(2a +
2b), Tk(2a+2b)+a(ω

′) > 2n, T−b(ω
′) ≤ 2n, and (ii) if T−b(ω) > Ta(ω), then ω′0 =

0, ω′2n = k(2a+ 2b), Tk(2a+2b)+a(ω
′) > 2n. Similarly for double reflections across

y = −b and then y = −2b − a to −2b − 2a, the new path may or may not touch
y = −3b − 2a (k = −1), so that there is a maximal |k|. For k = 0 (no reflections)
the path ω must touch both y = a and y = −b. The double reflections define one-to-
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one and invertible relations by reversing the reflections. Since the double reflection
|k|-times defines two relabeling of a path ω such that ω0 = ω2n = 0, T−b ≤
2n, Ta ≤ 2n defined by maximal |k| = |k(ω)|, in order to make the relation
well-defined (function) one must specify direction of reflections. Say the maximal
reflection is upward for k ≥ 1 and downward for k ≤ −1. We adopt the following
rule: For T−b(ω) > Ta(ω) use maximal upward double reflections from y = a to
define ω′ such that ω′0 = 0, ω′2n = k(2a + 2b), Ta+k(2a+2b)(ω

′) > 2n, Ta(ω
′) <

T2a+b(ω
′). For T−b(ω) < Ta(ω) use maximal downward double reflections from

y = −b to define ω′ such that ω′0 = 0, ω′2n = k(2a + 2b), T−b+k(2a+2b)(ω
′) >

2n(k ≤ −1), T−b(ω
′) < T−2b−a(ω

′). Note that “maximality” of k is defined
by the respective conditions [S2n = k(2a + 2b), Ta+k(2a+2b) > 2n)], (k ≥ 1),
[S2n = k(2a + 2b), T−b+k(2a+2b) > 2n)], (k ≤ −1), and this sets up one-to-one
correspondences with ω ∈ [T−b > Ta] and ω ∈ [T−b < Ta], respectively, and such
that ω0 = ω2n = 0, T−b(ω) ≤ 2n, Ta(ω) ≤ 2n. By the skip-free property of simple
random walk paths, the conditions that Ta(ω

′) < T2a+b(ω
′), T−b(ω

′) < T−2b−a(ω
′)

are redundant since for each path ω′, x → Tx (ω
′), T0(ω

′) = 0, is increasing as a
function of x > 0 and decreasing for x < 0. With this rule one has

P(S2n = 0, T−b ≤ 2n, Ta ≤ 2n)

= P(S2n = 0, T−b ≤ 2n, Ta ≤ 2n, T−b > Ta)

+P(S2n = 0, T−b ≤ 2n, Ta ≤ 2n, T−b < Ta)

=
∞∑

k=1

P(S2n = k(2a + 2b), Ta+k(2a+2b) > 2n)

+
−1∑

k=−∞
P(S2n = k(2a + 2b), T−b+k(2a+2b) > 2n)

=
∞∑

k=1

{P(S2n = k(2a + 2b))− P(S2n = 2a + k(2a + 2b))}

+
−1∑

k=−∞
{P(S2n = −k(2a + 2b))− P(S2n = −2b + k(2a + 2b))}

= 2
∞∑

k=1

{P(S2n = k(2a + 2b))− P(S2n = 2a + k(2a + 2b))}.

Thus, one has using (3.9) incorporating k = 0,

P(S2n = 0)

= P(S2n = 0)− P(S2n = 2a)− P(S2n = −2b)+ P(S2n = 0, T−b ≤ 2n, Ta ≤ 2n)

= P(S2n = 0)− P(S2n = 2a)− P(S2n = −2b)+ P(S2n = 0, T−b ≤ 2n, Ta ≤ 2n)
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= P(S2n = 0)− P(S2n = 2a)− P(S2n = −2b)

+2
∞∑

k=1

{P(S2n = k(2a + 2b))− P(S2n = 2a + k(2a + 2b))}

using symmetry of S2n with respect to the origin. To complete the proof let us check
that in the case a = b,

P(S2n = 0)− P(S2n = 2a)− P(S2n = −2b)

+2
∞∑

k=1

{P(S2n = k(2a + 2b))− P(S2n = 2a + k(2a + 2b))}

=
∞∑

k=−∞
{P(S2n = k(2a + 2b))− P(S2n = 2a + k(2a + 2b))}.

Namely, consider the difference with the desired series. That is,

∞∑

k=−∞
{P(S2n = k(2a + 2b))− P(S2n = 2a + k(2a + 2b))}

−2
∞∑

k=1

{P(S2n = k(2a + 2b))− P(S2n = 2a + k(2a + 2b))}

= P(S2n = 0)− P(S2n = 2a)+
−1∑

k=−∞
{P(S2n = k(2a + 2b))

−P(S2n = 2a + k(2a + 2b))}

−
∞∑

k=1

{P(S2n = k(2a + 2b))− P(S2n = 2a + k(2a + 2b))}

= P(S2n = 0)− P(S2n = 2a)+
∞∑

k=1

{P(S2n = 2a + k(2a + 2b))

−P(S2n = 2a − k(2a + 2b))}.
Telescoping occurs in the last series if a = b. Remarkably,

∞∑

k=1

{
P(S2n = 2a + k(2a + 2b))− P(S2n = 2a − k(2a + 2b))

} = −P(S2n = 2b),

which completes the proof for this case as well. �
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Remark 3.1. In the proofs of parts (ii) and (iii) of Corollary 3.4 two different types
of double reflections are used, namely upward/downward or downward/upward in
(ii), and upward/upward or downward/downward in (iii). Also see Exercise 2.

The following proposition records a frequently used asymptotic formula for n!
from which one may easily deduce that the expected time to reach y is infinite; see
Proposition 3.6 below. Stirling’s formula is such a prevalent tool for limit theorems
of probability that we include a proof here.

Proposition 3.5 (Stirling’s Formula). The sequence sn := n!√
2πnnne−n , n =

1, 2, . . . is monotonically decreasing and

i limn→∞ n!√
2πnnne−n = 1,

ii 1 ≤ n!
(2πn)1/2nne−n < e

(2π)1/2 , n = 1, 2, . . . .

Proof. To see that the sequence of ratios {sn}∞n=1 is monotonically decreasing,
observe that

log
n!

(2πn)1/2nne−n
= log n! − 1

2
log n − n log n + n − log(2π)

1
2

=
⎧
⎨

⎩

n∑

j=1

log j − 1

2
log n

⎫
⎬

⎭
− {n log n − n} − log(2π)

1
2

=
⎧
⎨

⎩

n∑

j=2

log( j − 1)+ log( j)

2
−
∫ n

1
log x dx

⎫
⎬

⎭
+ log(

e√
2π

), (3.10)

where the integral term may be checked by integration by parts. The point is that the
term defined by

Tn =
n∑

j=2

log( j − 1)+ log( j)

2
(3.11)

provides the inner trapezoidal approximation to the area under the curve y = log x ,
1 ≤ x ≤ n, noting the concavity of x → log x . Thus, in particular,

0 ≤
∫ n

1
log x dx − Tn

is monotonically increasing and the asserted upper bound on sn holds. To obtain
the asymptotic approximation (and lower bound) one notes by integration by parts
that n! = Γ (n + 1), where Γ (x) := ∫∞

0 t x−1e−t dt = 2
∫∞

0 s2x−1e−s2
ds, x > 0.
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Making a change of variables of the form s = √x + u yields

Γ (x)ex√x

xx
= 2

∫ ∞

0
ex−s2

(
s√
x
)2x−1ds = 2

∫ ∞

−√x
e−2u

√
x (1+ u√

x
)2x−1e−u2

du.

(3.12)
Define

g(x, u) :=
{

0 if u ≤ −√x

e−2u
√

x (1+ u√
x
)2x−1 if u ≥ −√x .

(3.13)

Then, the Taylor expansion for log(1 + y) = ∑∞
m=1(−1)m+1 ym/m applied to

log(1 + u/
√

x) for large x yields log g(x, u) = −u2 + O(x−1/2), and therefore
limx→∞ g(x, u) = e−u2

as x → ∞. Now check that g(x, u) achieves a maximum
value at u = − 1

2
√

x
with g(x, u) ≤ E(1 − 1

2x )
2x−1. It now follows from (3.12),

using Lebesgue’s dominated convergence theorem,

lim
x→∞

Γ (x)ex√x

xx
= 2

∫ ∞

−∞
e−2u2

du = 2
√
π/2 = √2π. (3.14)

Letting x = n above and noting that n! = Γ (n + 1) = nΓ (n), one arrives at the
desired limit in Proposition 3.5(i). The lower bound in (ii) also follows from the fact
that the sequence within curly brackets in (3.10) is decreasing. This completes the
proof of the proposition and provides the basic asymptotic formula

n! = √2πnnne−n(1+ δn), (3.15)

where δn → 0 as n →∞. �
Proposition 3.6. For the simple symmetric random walk starting at an integer x ,
one has for every state y �= x ,

ET x
y = ∞.

Proof. Without loss of generality one may take x = 0 and apply Stirling’s formula

to compute the asymptotic form of the terms N P(Ty = N ) = O(N− 1
2 ) as N →∞

from which divergence of the series defining ETy follows. �
To conclude this chapter we make note of the surprising fact that the relation

between the first passage time distribution and position conveyed by Proposition 3.2
is actually true for random walks1 on the integers defined by Sn = Y1 + Y2 +
· · · ,Yn, n ≥ 1, S0 = 0, for i.i.d. integer-valued displacement random variables Yi

1The proof presented here is due to Hofstad van der and Keane (2008) and also applies to
symmetrically dependent walks, i.e., to partial sum sequences having exchangeable increments.
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such that P(Y1 ≥ −1) = 1, i.e., with the property that it is impossible to skip states
in moving to the left.2

An application to formulae for the distribution of total progeny for a particular
critical Bienaymé–Galton–Watson branching process is given in the Example 22.2
of Chapter 22. Kemperman’s formula may also be viewed as a generalized ballot
theorem (see Exercise 4).

Proposition 3.7 (Kemperman’s Formula). Let S0 = 0, Sn = Y1 + · · · + Yn, n ≥ 1
be a random walk on the integers starting at zero, and such that it does not skip
states to the left, i.e., P(Sn+1 − Sn ≥ −1) = 1∀n ≥ 0. For a positive integer y, let
T−y = inf{n ≥ 1 : Sn = −y}. Then

P0(T−y = N ) = y

N
P0(SN = −y), N = 1, 2, . . . ,

or equivalently, letting T0 = inf{n ≥ 1 : Sn = 0} if S0 = y > 0,

Py(T0 = N ) = y

N
Py(SN = 0), N = 1, 2, . . . .

Proof. In anticipation of the string of calculations to follow let us first note that
E(Y1|SN = −y) = E(Y j |SN = −y) = − y

N . (This last equality follows by
summing over j = 1, . . . N .) Now, using the definitions of S and T ,

P0(T−y = N ) =
∞∑

x=−1

P0(T−y = N |Y1 = x)P0(Y1 = x)

=
∞∑

x=−1

P0(T−y−x = N − 1)P0(Y1 = x)

=
∞∑

x=−1

y + x

N − 1
P0(SN−1 = −y − x)P0(Y1 = x),

where the last equality is obtained from an induction hypothesis on the validity of
the formula for N − 1. It follows by reorganizing the conditioning and using the
anticipated conditional expectation above that

P0(T−y = N )

= 1

N − 1

∞∑

x=−1

(y + x)P0(SN−1 = −y − x)P0(Y1 = x)

2This result is generally attributed to Kemperman (1950).
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= 1

N − 1

∞∑

x=−1

(y + x)P0(SN = −y|Y1 = x)P0(Y1 = x)

= 1

N − 1
{y P0(SN = −y)+

∞∑

x=−1

x P0(Y1 = x |SN = −y)P0(SN = −y)}

= 1

N − 1
P0(SN = −y){y + E(Y1|SN = −y)}

= 1

N − 1
P0(SN = −y){y − y

N
} = y

N
P0(SN = −y). (3.16)

For the equivalent statement simply consider the respective events with Sn replaced
by Sn + y, n = 0, 1 . . . . �
The property that the walk on the integers does not skip states to the left described
in Proposition 3.7 will be referred to as the left-skip free property.

Exercises

1. (Method of Images) Let a, b > 0, 0 < x < a. Define a simple random

walk with absorbing boundaries at −b, a by Sn = Sn∧T−b∧Ta , n ≥ 0, where
Sn, n ≥ 0, is the (unrestricted) simple symmetric random walk starting at 0.
Extend Corollary 3.4 by showing

(i) P(S2n = x, T−b > 2n) = P(S2n = x)− P(S2n = 2b − x), n ≥ 1.
(ii) P(S2n = x, T−b > 2n, Ta ≤ 2n) = P(S2n = 2a + x) − 2P(S2n =

2b + 2a − x), n ≥ 1.
(iii) In the case a = b, P(S2n = x, T−a > 2n, Ta > 2n) = ∑∞

k=−∞{P(Sn =
x + 4ka)− P(Sn = 2a − x + 4ka)}, n ≥ 1.

2. Show that for a �= b, the formula P(Sn = 0, T−b > n, Ta > n) = P(S2n =
0) − P(S2n = 2a) − P(S2n = 2b) + 2

∑∞
k=1{P(Sn = k(2a + 2b) − P(Sn =

2a + k(2a + 2b))}, n ≥ 1, fails to reduce to the corresponding doubly infinite
series. [Hint: The probability is 2−2n in the case a = 2, b = 1.]

3. (Bertrand’s classic ballot theorem) Candidates A and B have probabilities p
and q = 1 − p (0 < p < 1) of winning any particular vote, respectively,
independently among voters. If A scores a votes and B scores b votes, a >

b, then show that a−b
a+b is the (conditional) probability that A will maintain a

lead throughout the process of sequentially counting all a + b votes cast. [Hint:
Reformulate as a hitting time problem for symmetric simple random walk and
apply the reflection principle, independently of p.]
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4. (Generalized ballot theorem3) Let {Sn = Y1 + · · · + Yn : n ≥ 1}, S0 = 0, be
a random walk on the integers having non-negative integer valued displacement
random variables. Show that for a nonnegative integer 0 ≤ y < N , P0(Sm <

m,m = 1, 2, . . . , N |SN = y) = N−y
N . [Hint: Apply the Kemperman formula

for hitting zero starting at N − y > 0 to the left-skip free random walk S̃m =
Ỹ1 + · · · + Ỹm,m ≥ 1, where S̃m = N − y − m + SN − SN−m,m = 1, . . . , N ,
S̃0 = N − y > 0, and S̃m − S̃m−1 = YN−m+1 − 1 ≥ −1.]

5. (A Reflection Property) For the simple symmetric random walk {Sn}∞n=0 starting
at 0 use the fact that, for a positive integer y > 0, N = 1, 2, . . . .

P

(

max
n≤N

Sn ≥ y

)

= 2P(SN ≥ y)− P(SN = y),

to prove the algebraic identity

∗∑

y≤m≤N

y

m

( m
m+y

2

)

2−m = 2
∗∑

x≥y

(
N

N+x

2

)

2−N −
( N

N+y

2

)

2−N ,

where the respective asterisks in the sums indicate that the summation is over
values of m such that m + y is even, and x such that N + x is even, respectively.

6. Let {Sn}∞n=0 be the simple symmetric random walk starting at 0 and let

MN = max{Sn : n = 0, 1, 2, . . . , N }; m N = min{Sn : n = 0, 1, 2, . . . , N }.

(i) Calculate the distribution of MN .
(ii) Calculate the distribution of m N .

(iii) Show P(MN ≥ z, SN = y) =
{

P(SN = y), y ≥ z

P(SN = 2z − y) y ≤ z.

7. Suppose that the points of the state space S = Z are painted blue with probability
ρ or green with probability 1 − ρ, 0 ≤ ρ ≤ 1, independently of each other and
of a simple random walk {Sn}∞n=0 starting at 04 Let B denote the random set
of states (integer sites) colored blue and let Nn(ρ) denote the amount of time
(occupation time) that the random walk spends in the set B prior to time n, i.e.,

Nn(ρ) =
n∑

k=0

1B(Sk).

3Hofstad van der and Keane (2008) attribute this formulation to Konstantopoulos (1995).
4See Spitzer (1976) for this and related problems in the so-called potential theory of random walk.
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Show that regardless of p, q, ENn(ρ) = (n + 1)ρ. [Hint: E1B(Sk) =
E{E[1B(Sk) | Sk]}.]

8. Establish the following analytic identities as consequences of the probabilistic
results of this chapter.

(i)
∑

N≥|y|,
N+y even

{ |y|
N

(
N

N+y
2

)

2−N
}

= 1 for all y �= 0.

(ii) For p > q,

∑

N≥|y|,
N+y even

{ |y|
N

(
N

N+1
2

)

p(N+y)/2q(N−y)/2
}

=
⎧
⎨

⎩

1 for y > 0
(

p
q

)y
for y < 0.



Chapter 4
Multidimensional RandomWalk

The simple symmetric random walk on the integers readily extends to that
of a simple symmetric random walk on the k-dimensional integer lattice, in
which at each step the random walk moves with equal probability to one of its
2k neighboring states on the lattice. A celebrated theorem of Pólya provides
a role for dimension k in distinguishing between recurrent and transient
properties of the random walk. Namely, it is shown by combinatorial methods
that the simple symmetric random walk on the k-dimensional integer lattice
Z

k is recurrent for k = 1, 2 and transient for k ≥ 3.

The k-dimensional unrestricted simple symmetric random walk describes the motion
of a particle moving randomly on the integer lattice Z

k according to the following
rules. Starting at a site x = (x1, . . . , xk) with integer coordinates, the particle moves
to a neighboring site in one of the 2k coordinate directions randomly selected
with probability 1/2k, and so on, independently of previous displacements. The
displacement at the nth step is a random variable Xn whose possible values are
vectors of the form ±ei , i = 1, . . . , k, where the j th component of ei is 1 for j = i
and 0 otherwise. X1, X2, . . . are i.i.d. with

P(Xn = ei ) = P(Xn = −ei ) = 1/2k for i = 1, . . . , k. (4.1)

The corresponding position process is defined by

Sx0 = x, Sxn = x+ X1 + · · · + Xn, n ≥ 1. (4.2)

© Springer Nature Switzerland AG 2021
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The case k = 1 is already treated in the preceding chapters with p = q = 1
2 . In

particular, for k = 1 we know that the simple symmetric random walk is recurrent.
Consider the coordinates of Xn = (X1

n, . . . , Xk
n). Although Xi

n and X j
n are not

independent, notice that they are uncorrelated for i �= j . Likewise, the coordinates
of the position vector Sxn = (Sx,1

n , . . . , Sx,k
n ) are uncorrelated. In particular,

ESxn = x,

Cov(Sx,i
n , Sx, j

n ) =
{

n
k , if i = j,

0, if i �= j.
(4.3)

Therefore the covariance matrix of Sxn is n
k I where I is the k × k identity matrix.

The problem of describing the recurrence properties of the simple symmetric
random walk in k dimensions is solved by the theorem of Pólya below. The proof
will be preceded by the following preliminary lemma.

Lemma 1. Let S0 = 0 and

rn = P(Sn = 0)

fn = P(Sn = 0 for the first time after time 0 at n), n ≥ 1. (4.4)

Let r̂(s) and f̂ (s) denote the respective probability generating functions of {rn}∞n=0
and { fn}∞n=0 defined by

r̂(s) =
∞∑

n=0

rnsn, f̂ (s) =
∞∑

n=0

fnsn (0 < s < 1). (4.5)

Then

r̂(s) = 1

1− f̂ (s)
. (4.6)

The probability γ of eventual return to the origin,

γ :=
∞∑

n=1

fn = f̂ (1−), (4.7)

satisfies γ < 1 if and only if β := r̂(1−) <∞.

Proof. One has the convolution equation

rn =
n∑

j=0

f j rn− j for n = 1, 2, . . . , r0 = 1, f0 = 0, (4.8)
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which transforms as

r̂(s) = 1+
∞∑

n=1

n∑

j=0

f j rn− j s
j sn− j = 1+

∞∑

j=0

( ∞∑

m=0

rmsm

)

f j s
j = 1+ f̂ (s)r̂(s).

(4.9)
Therefore (4.6) follows. Note that by the monotone convergence theorem, r̂(s) ↗
r̂(1−) and f̂ (s) ↗ f̂ (1−) as s ↗ 1. If f̂ (1−) < 1, then r̂(1−) = lim s ↑ 1(1 −
f̂ (s))−1 <∞. If f̂ (1−) = 1, then r̂(1−) = lims↗1(1− f̂ (s))−1 = ∞. Therefore,
γ < 1 if and only if β := r̂(1−) <∞. �
Theorem 4.1 (Pólya). {Sxn}∞n=0 is recurrent for k = 1, 2 and transient for k ≥ 3.

Proof. We will simply compute the criteria of Lemma 1. Namely, we note that
0 is transient (i.e., γ < 1) or recurrent (i.e., γ = 1) if and only if β :=
r̂(1−) < ∞ or r̂(1−) = ∞), respectively. The result has already been obtained
for k = 1 by a different method; also see Exercise 1. It is sufficient to consider
recurrence/transience of 0 for {Sn = S0n}∞n=0 (Exercise 2). This criterion is applied
to the case k = 2 as follows. Since a return to 0 is possible at time 2n if and only if
the numbers of steps among the 2n in the positive horizontal and vertical directions
equal the respective numbers of steps in the negative directions,

r2n = 4−2n
n∑

j=0

(2n)!
j ! j !(n − j)!(n − j)! =

1

42n

(
2n

n

) n∑

j=0

(
n

j

)2

= 1

42n

(
2n

n

) n∑

j=0

(
n

j

)(
n

n − j

)

= 1

42n

(
2n

n

)2

. (4.10)

The combinatorial identity used to get the last line of (4.10) follows by considering
the number of ways of selecting samples of size n from a population of n objects
of type 1 and n objects of type 2 (Exercise 3). Apply Stirling’s formula to (4.10) to
get r2n = O(1/n) > c/n for some c > 0. Therefore, β = r̂(1) = +∞ and so 0
is recurrent in the case k = 2. Let us include the case k = 3 = 2 + 1 in a general
inductive argument for all k ≥ 3 to show that

r2n ≡ r (k)2n ≤ ckn−k/2, k ≥ 3. (4.11)

For this we use induction on the dimension k, but first condition on the binomially
distributed number N2n of times the (k + 1)-st coordinate is selected among paths
in the event [S2n = 0], to obtain the recursive relation

r (k+1)
2n =

n∑

j=0

P(S2n = 0|N2n = 2n − 2 j)P(N2n = 2n − 2 j)
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=
n∑

j=0

(
2n

2 j

)

(
1

k + 1
)2n−2 j (

k

k + 1
)2 j r (1)2n−2 j r

(k)
2 j , (4.12)

i.e., given that there are 2n − 2 j selections of the (k + 1)-st coordinate in the
event [S2n = 0], the one-dimensional random walk of the (k + 1)-st coordinate
viewed at times of those selections must return to zero in 2n − 2 j steps, and the
k-dimensional random walk viewed at the other times must independently return

to zero in 2 j steps. One may easily check that the terms j = 0, n are O(n− k+1
2 );

recall that an = O(bn) means that there is a constant c (independent of n) such that
|an| ≤ c|bn| for all n. To simplify notation let us use c to signify a constant which
does not depend on n, though we will not otherwise keep track of its revised values

in subsequent estimates. Also note that r (1)2n−2 j = O((2n − 2 j)− 1
2 ) = O( n

1
2

2n−2 j+1 )

and by induction r (k)2 j = O((2 j)
k
2 ). To (inductively) bound the expression for r (k+1)

2n ,
separately, consider cases of even and odd k = 2m, 2m + 1,say, respectively.
In the even case (k = 2m), for example, the r (k)2 j -term may be further bounded
by a constant (independent of n) times (2 j)−m ≤ c/(2 j + 1) · · · (2 j + m).
Use this and adjust the binomial coefficient

(2n
2 j

)
accordingly to obtain r (k+1)

2n ≤
c n

1
2 (2n)!

(2n+m+1)!
∑n−1

j=1

(2n+m+1
2 j+m

)
( 1

k+1 )
2n−2 j+1( k

k+1 )
2 j+m ≤ c n

1
2 (2n)!

(2n+m+1)! ≤ c n
1
2

nm+1 =
cn− k+1

2 . Note that this includes the case k = 2 so that, in particular we have proven

r (3)2n ≤ cn− 3
2 . The general case of odd k = 2m + 1 follows directly from the above

bound for k = 2m. That is, r (2m+1)
2 j ≡ r (k+1)

2 j ≤ cn− k+1
2 = cn− 2m+1

2 . To complete
the proof simply note that for k ≥ 3,

∑

n

r (k)n <∞. (4.13)

In particular, 0 is recurrent in dimensions k = 1, 2 and transient for all higher
dimensions k ≥ 3. �

Exercises

1. Show for one-dimensional simple symmetric random walk that
∑∞

n=0 P(Sn = 0)
diverges.

2. Show that the k-dimensional simple symmetric random walk {Sxn : n =
0, 1, 2, . . . } is recurrent or transient according to whether 0 is a recurrent or
transient state for {Sn : n = 0, 1, 2, . . . }. [Hint: For arbitrary states x, y consider
the number of visits to y starting from x as a sum of indicators.]

3. Verify the combinatorics required for the last equality in (4.10).
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4. Let X1,X2, . . . be i.i.d. random vectors with values in Z
k (k ≥ 1). Suppose that

E|X ( j)
1 | < ∞, j = 1, . . . k, where Xn = (X (1)

n , . . . , X (k)
n ), n = 1, 2, . . . .

Let Sn := X1 + · · · + Xn, n = 1, 2, . . . . Show that if μ = EX1 =
(EX (1)

1 , . . . ,EX (k)
1 ) �= 0 then P(Sn = 0 i.o.) = 0. [Hint: Use the strong law

of large numbers].
5. (i) Show that for the 2-dimensional simple symmetric random walk, the proba-

bility of a return to (0, 0) at time 2n is the same as that for two independent
walkers, one along the horizontal and the other along the vertical, to be at
(0, 0) at time 2n. Also verify this by a geometric argument based on two
independent walkers with step size 1/

√
2 and viewed along the axes rotated

by 45◦.
(ii) Show that relations (4.8) hold for a general random walk on the integer

lattice in any dimension.
6. (i) Show that the result of Exercise 5(i) above does not hold in k = 3

dimensions.
(ii) Show that the motion of three independent simple symmetric random

walkers starting at (0, 0, 0) in Z
3 is transient.

7. Calculate the probability that the simple symmetric k-dimensional random walk
will return i.o. to a previously occupied site.1 [Hint: The conditional probability,
given S0, . . . ,Sn , that Sn+1 /∈ {S0, . . . ,Sn} is at most (2k − 1)/2k. Check that

P(Sn+1, . . . ,Sn+m ∈ {S0, . . . ,Sn}c) ≤
(

2k − 1

2k

)m

for each m ≥ 1.]

1For a more detailed perspective on contemporary problems of this flavor see Lawler and Limic
(2010).



Chapter 5
The Poisson Process, Compound Poisson
Process, and Poisson Random Field

Poisson processes broadly refer to stochastic processes that are the result of
counting occurrences of some random phenomena (points) in time or space
such that occurrences of points in disjoint regions are statistically indepen-
dent, and counts of two or more occurrences in an infinitesimally small region
are negligible. This chapter provides the definition and some characteristic
properties of both homogeneous and inhomogeneous Poisson processes, and
more general random fields; the latter refers to occurrences in non-linearly
ordered (e.g., non-temporal) spaces. The compound Poisson process is a
fundamentally important example from the perspective of both applications
and general representations of processes with independent increments. As
such it may be viewed as a continuous parameter generalization of the random
walk.

The law of rare events provides the Poisson distribution, pk = νk

k! e
−ν, k =

0, 1, 2, . . . , with parameter ν > 0 as an approximation to the Binomial distribution,(n
k

)
pk(1 − p)n−k, k = 0, 1, 2 . . . , n, with parameters n, p in the limit as n →

∞, p ↓ 0, np = ν > 0. This is a rather simple calculus exercise to verify
(see Exercise 1) also referred to as the Poisson approximation to the binomial
distribution.

A probabilistic derivation that also provides error bounds was given by Lucien
Le Cam1 using a remarkable concept referred to as coupling. For this, let X =
{X1, X2, . . . Xn} be i.i.d. Bernoulli 0 − 1-valued random variables with parameter
p = P(Xi = 1), i ≥ 1, and let Y = {Y1,Y2, . . . Yn} be an i.i.d. sequence of

1Le Cam (1960a).
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Poisson distributed random variables with parameter ν/n. Then S = ∑n
j=1 X j

has the desired Binomial distribution, and T = ∑n
j=1 Y j has the desired Poisson

distribution.

Lemma 1 (Coupling Inequality). For any set A of non-negative integers one has

|P(S ∈ A)− P(T ∈ A)| ≤ P(S �= T ).

Proof. One has

|P(S ∈ A)− P(T ∈ A)|
= |P(S ∈ A, T ∈ A)+ P(S ∈ A, T ∈ Ac)− P(S ∈ A, T ∈ A)− P(S ∈ Ac, T ∈ A)|
≤ P(S �= T ).

�
The innovation involved in coupling is that of reducing the chance of S �= T

by introducing correlations (statistical dependence) between the random variables.
First observe that

P(S �= T ) = P(
n∑

j=1

X j �=
n∑

j=1

Y j ) ≤ P(∪n
j=1[X j �= Y j ]) ≤ n P(X1 �= Y1).

The probability is reduced by the construction given in the following proof.

Proposition 5.1 (Poisson Approximation to Binomial Distribution). For ν = np,

|
(

n

k

)

pk(1− p)n−k − νk

k! e
−ν | ≤ np2.

Proof. Let U1,U2, . . .Un be i.i.d. uniformly distributed random variables on the
interval [0, 1]. Define

X j =
{

0 0 ≤ U j < 1− p

1 1− p ≤ U j < 1,
(5.1)

and

Y j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 0 ≤ U j < e−p

1 e−p ≤ U j < e−p + pe−p

2 e−p + pe−p ≤ U j < e−p + pe−p + p2

2! e
−p

... etc.

(5.2)
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This provides a coupled construction of X1, . . . , Xn and Y1, . . . ,Yn with the desired
distributions. Moreover, using e−p ≥ 1− p, one has

P(S �= T ) ≤ n P(X1 �= Y1)

= n{P(X1 = 0,Y1 ≥ 1)+ P(X1 = 1,Y1 = 0)+ P(X1 = 1,Y1 ≥ 2)}
= n{P(U j < 1− p,U j ≥ e−p)+ P(U j ≥ 1− p,U j < e−p)

+P(U j ≥ e−p + pe−p,U j ≥ 1− p)}
= n{0+ (e−p − 1+ p)+ (1− e−p − pe−p)}
= np(1− e−p) ≤ np2.

�
An inspection of the proof shows that in fact one may approximate the sum of
independent Bernoulli random variables with parameters p j = P(X j = 1), 1 ≤
j ≤ n, by a Poisson distribution with parameter ν =∑n

j=1 p j with an error at most
∑n

j=1 p2
j ≤ max1≤ j≤n p j

∑n
j=1 p j ; see Exercise 2.

The Poisson process is a renewal counting process with i.i.d. exponential inter-
arrival times; see Chapters 25, 26. Let T0, T1, . . . be i.i.d. exponentially distributed
random variables with parameter λ > 0 defined on a probability space (Ω,F , P).
Fixing a time origin at t = 0, T0 denotes the time to the first occurrence, T1 the
time between the first and second occurrences, and so on. Thus Tk may be viewed
as an inter-arrival time , or as a holding time in the state k, for a particle moving on
{0, 1, 2, . . . }, one step at a time. For t ≥ 0, the total number of occurrences by time
t is counted by

Xt =
{

0 if T0 > t

sup{n ≥ 1 : T0 + · · · + Tn−1 ≤ t} else.
(5.3)

Here the indexing set is Λ = [0,∞) and a priori S = Z+ ∪ {∞} with S = 2S, the
power set of S. Note that P(Xt = 0) = P(T0 > t) = e−λt , t ≥ 0. Also, for k ≥ 1,
the k-fold convolution of exponential densities λe−λt , t ≥ 0, is the Gamma density
λk tk−1e−λt/(k − 1)!, t ≥ 0, with parameters k, λ. In particular, therefore, the time
Ak := T0 + · · · + Tk−1 of the kth arrival has a Gamma distribution with parameters
k, λ and

Qt ({k}) = P(Xt = k) = P(T0 + · · · + Tk−1 ≤ t < T0 + · · · + Tk)

= P(T0 + · · · + Tk > t)− P(T0 + · · · + Tk−1 > t)

= (λt)k

k! e−λt + P(T0 + · · · + Tk−1 > t)

−P(T0 + · · · + Tk−1 > t)
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= (λt)k

k! e−λt , (5.4)

where the first term of the third line results from integration by parts of the Gamma
density; see Exercise 8. More generally let us show that {Xt : t ≥ 0} is a process
with independent and stationary (or homogeneous) Poisson distributed increments
in a sense made precise as follows.

Proposition 5.2. For any 0 = t0 < t1 < · · · < tm , ki ∈ Z+, 1 ≤ i ≤ m,

P(Xti − Xti−1 = ki , i = 1, . . . ,m) =
m∏

i=1

P(Xti − Xti−1 = ki ) (5.5)

with

P
(
Xti − Xti−1 = ki

) = [λ(ti − ti−1)]ki

ki ! e−λ(ti−ti−1) = P
(
Xti−ti−1 = ki

)
. (5.6)

To verify (5.5), (5.6) we will first derive an interesting and useful property
concerning the conditional distribution of the successive arrival times in the period
from 0 to t given the number of arrivals in [0, t]. Proposition 5.2 will essentially
follow as a corollary.

Proposition 5.3 (Order Statistic Property (o.s.p.)). Let A1 = T0, A2 = T0 +
T1, . . . , A j = T0 + T2 + · · · + Tj−1, . . . , denote successive arrival times of the
process {Xt : t ≥ 0}. Then the conditional distribution of (A1, A2, . . . , Ak) given
[Xt = k] is the same as that of k increasingly ordered independent random variables
each having the uniform distribution on (0, t].
Proof. Let U0, U1, . . . , Uk−1 be k i.i.d. random variables uniformly distributed on
(0, t]. Let U(0) be the smallest of {U0, U1, . . . ,Uk−1,U(1)} the next smallest, etc., so
that with probability one U(0) < U(1) < · · · < U(k−1). Since each realization of the
order statistic defined by (U(0),U(1), . . . ,U(k−1)) corresponds to exactly one of k!
permutations of (U0,U1, . . . ,Uk−1), each with the same probability density 1/tk ,
the joint density of (U(0),U(1), . . . ,U(k−1)) is given by

g(s0, . . . , sk−1) =
{

k!
tk if 0 < s0 < s1 < · · · < sk−1 ≤ t

0 otherwise.
(5.7)

For the remainder of the proof of Proposition 5.3 we simply compute the conditional
density of (A1, . . . , Ak) given [Xt = k] and compare it to (5.7). First note that T0,
T1, . . . , Tk are i.i.d. with joint density given by
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f (x0, x1, . . . , xk) =
⎧
⎨

⎩

λk+1 exp
{
−λ∑k

i=0 xi

}
if xi > 0 for all i,

0 otherwise.
(5.8)

Since the Jacobian of the transformation

(x0, x1, . . . , xk)→ (x0, x0 + x1, . . . , x0 + x1 + · · · + xk)

is 1, the joint density of T0, T0 + T1, . . . , T0 + T1 + · · · + Tk is obtained from (5.8)
as

h(t0, t1, . . . , tk) = λk+1e−λtk for 0 < t0 < t1 < t2 < · · · < tk . (5.9)

The density of the conditional distribution of T0, T0 + T1, . . . , T0 + T1 + · · · + Tk

given [Xt = k] ≡ [T0 + T1 + · · · + Tk−1 ≤ t < T0 + T1 + · · · + Tk] is therefore

q(s0, s1, . . . sk) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λk+1e−λsk

P(T0 + T1 + · · · + Tk−1 ≤ t < T0 + T1 + · · · + Tk)

if 0 < s0 < s1, . . . < sk and sk−1 ≤ t < sk,

0 otherwise.

(5.10)

Therefore, using (5.4),

q(s0, s1, . . . , sk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λk+1e−λsk

e−λt (λt)k
k!

= λk!e−λsk

e−λt t k

if 0 < s0 < · · · < sk, sk−1 ≤ t < sk,

0 otherwise.

(5.11)

Integrating this over sk we get the conditional density of T0, T0+ T1, . . . , T0+ T1+
· · · + Tk−1 given [Xt = k] as

p(s0, s1, . . . , sk−1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(λ)k!
tke−λt

∫ ∞

t
e−λsk dsk = k!

e−λt t k
e−λt = k!

tk

if 0 < s0 < s1 < · · · < sk−1 ≤ t,

0 otherwise.

(5.12)

Thus, as asserted, p is the same as g in (5.7). �
The verification of (5.5), (5.6) can now be made using Proposition 5.3 and (5.4)

as follows:

Proof. (of Proposition 5.2) Writing k = k1 + · · · + km , one uses (5.4) to get

P(Xti − Xti−1 = ki , i = 1, . . . ,m)
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= P(Xti − Xti−1 = ki , i = 1, . . . ,m | Xtm = k) · e−λtm (λtm)k

k! . (5.13)

By Proposition 5.3, the conditional probability above equals the probability that of k
independent random variables each uniformly distributed on (0, tm], k1 are in (0, t1),
k2 are in (t1, t2], . . . , km are in (tm−1, tm]. This latter probability is

k!
k1!k2! · · · km !

(
t1
tm

)k1
(

t2 − t1
tm

)k2

· · ·
(

tm − tm−1

tm

)km

. (5.14)

Using this in (5.13), one arrives at (5.5), (5.6). �
Outside a subset of Ω of zero probability Xt takes values in Z+ for all t ≥ 0.

Such a subset may be removed and S = Z+ may then be taken as the state space.
Also, for each ω ∈ Ω , the function t → Xt (ω), referred to as a sample path of
the process {Xt : t ≥ 0}, defined by (5.3) is a right-continuous non-decreasing step
function. This stochastic process is called a Poisson process. Note that by (5.5) the
increments Xti − Xti−1 , i = 1, . . . , m, are independent with Poisson distributions
having means λ(ti − ti−1), respectively. The parameter λ > 0 is called the intensity
parameter.

As noted above, for fixed ω ∈ Ω, the sample paths t → Xt (ω) are
right-continuous step functions. Moreover, for any t > 0, P(Xt < ∞) =
∑∞

k=0
(λt)k

k! e−λt = 1 so that there can be at most finitely many occurrences in any
finite time interval. In this regard one says that the process is non-explosive; see
Exercise 13 for contrast. By (5.3), one may view the stochastic process {Xt : t ≥ 0}
as a random path in the path space Γ of right-continuous non-decreasing step
functions on [0,∞). The distribution of the stochastic process X := {Xt : t ≥ 0}
is the induced probability measure Q = P ◦ X−1 on Γ which is uniquely specified
by the probabilities assigned to finite-dimensional events as follows: Let G be the
σ -field generated by finite-dimensional subsets of Γ of the form

F = {g ∈ Γ : g(ti ) = ki , i = 1, . . . ,m}, (5.15)

where ki ∈ Z+, 0 = t0 < t1 < · · · < tm ; alternative see Exercise 4. Then Q =
P ◦ X−1 is a probability on the path space (Γ,G) and, in particular, the probability
of a finite-dimensional event has the following formula

Q(F) = P({ω ∈ Ω : Xti (ω) = ki , i = 1, . . . ,m}) (5.16)

=
m∏

j=1

[λ(t j − tt−1)]k j−k j−1

(k j − k j−1)! e−λ(t j−t j−1), (5.17)

for 0 = k0 ≤ k1 ≤ k2 ≤ · · · ≤ km ∈ Z+, t0 = 0, see Exercise 9. The
finite-dimensional distributions of {Xt : t ≥ 0} refer to these joint distributions
of (Xt1 , . . . , Xtm ) for fixed but arbitrary 0 ≤ t1 < t2 < · · · < tm .
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Remark 5.1. In view of the above developments, an equivalent alternative defini-
tion of the homogeneous Poisson process X may be given by simply specifying
a process having right-continuous and non-decreasing unit jump step functions
as sample paths starting at X0 = 0, and having stationary independent Poisson
distributed increments Xt − Xs, s < t , with mean λ(t − s), for some λ > 0.

Remark 5.2. A martingale characterization of the Poisson process is given in
Chapter 15.

The implicit order structure of the real numbers is both natural and essential
for the previous definition of the Poisson process on Λ = [0,∞) in terms of a
sequence of i.i.d. exponential inter-arrival times. However, one may extract certain
basic structure, in particular the independence of the numbers of points in disjoint
regions, for an extension of the model to the random occurrence of points in
higher dimensional (unordered) spaces. To motivate the extension, consider again
the Poisson process X = {Xt : t ≥ 0} on Λ = [0,∞) in terms of the corresponding
random counting measure M defined on the Borel σ -field B(Λ) by regarding X as
its distribution function, i.e.,

M(a, b] = Xb − Xa, 0 ≤ a ≤ b. (5.18)

Equivalently M(dt) = ∑∞
n=1 δAn (dt), where A1 = T0, A2 = T0 + T1, . . . ,

(Exercise 6). That is, the random points A1, A2, . . . distributed in Λ may be
represented in terms of the random atoms of the counting measure M .

To proceed with the general definition of a Poisson random field, let (Λ,L, ρ) be
a measure space with an arbitrary non-negative sigma-finite measure ρ(ds). Let M
denote the space of all non-negative, integer-valued measures on (Λ,L) and give
M the σ -field FM generated by sets of the form {μ ∈M : μ(B) = n} for B ∈ L,
and integral n ≥ 0 or n = ∞.

Definition 5.1. The random field M = {M(B) : B ∈ L} defined on a probability
space (Ω,F , P) is called the Poisson random field with intensity ρ(dx) if

1. M : Ω →M is measurable with respect to the designated σ -fields F and FM,
respectively.

2. For each B ∈ L such that ρ(B) < ∞, P(M(B) = n) = ρ(B)n

n! e−ρ(B), n =
0, 1, . . . . If ρ(B) = ∞, then M(B) = ∞ a.s.

3. For pairwise disjoint sets Bk, k = 1, . . . , n in L, n ≥ 1, the random variables
M(B1), . . . , M(Bn) are independent.

As a special case this definition includes the inhomogeneous Poisson process on
Λ = [0,∞), or even Λ = R, with non-constant intensity ρ(dx) = λ(x)dx for a
non-negative (measurable) function λ on Λ; see Exercise 14.

The problem now is to show that a Poisson random field exists on a given σ -finite
measure space (Λ,L, ρ).
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Theorem 5.4. Let (Λ,L, ρ) be a σ -finite measure space,ρ �= 0. Then there is a
Poisson random field M on Λ with intensity ρ.

Proof. Since ρ is σ -finite there is a collection of disjoint measurable subsets
Λ1,Λ2, . . . of Λ with 0 < ρ(Λ j ) < ∞, j ≥ 1, and Λ = ∪∞j=1Λ j . Using
the Kolmogorov extension theorem, construct a probability space (Ω,F , P) with
a sequence X1, X2, . . . of independent Poisson distributed random variables with
respective means ρ(Λ j ), j ≥ 1, and, for each j ≥ 1, a sequence of i.i.d.

random variables A( j)
1 , A( j)

2 , . . . , also independent of X1, X2, . . . , such that A( j)
i

is distributed on Λ j according to the probability distribution ρ(dx)/ρ(Λ j ). Now,
for B ∈ L define

M(B) =
∞∑

j=1

1[X j ≥ 1]
X j∑

k=1

1[A( j)
k ∈ B ∩Λ j ].

Note that M(·) = limN→∞
∑N

j=1 1[X j ≥ 1]∑X j
k=1 δA( j)

k
(·) is the a.s. limit of FM

measurable maps of Ω into M, and is therefore measurable. It is also a simple
calculation to see that for disjoint sets B1, . . . , Bm in L one has for any positive
r1, . . . , rm that (Exercise 5)

E exp{−
m∑

i=1

ri M(Bi )} =
m∏

i=1

exp{(e−ri − 1)ρ(Bi )}, (5.19)

since the factors exp{−ri M(Bi )} are independent for i = 1, 2, . . . ,m. �
Example 1. Suppose that M is a non-homogeneous Poisson process onΛ = R with
intensity measure ρ(dx) = e−x dx . Then let us observe that since

∫∞
0 e−x dx <∞,

there is a right-most occurrence, say Tmax, for M . Specifically one has

EM(0,∞) =
∫ ∞

0
ρ(x)dx <∞,

and therefore M(0,∞) <∞ with probability one. Since there is a.s. at most a finite
number of occurrences to the right of 0, there must be a largest one. The distribution
is easily calculated by

P(Tmax ≤ x) = P(M(x,∞) = 0) = exp{−e−x }, x ∈ R.

This is referred to as the standard Gumbel or Frechet extreme value distribution.

Although time-inhomogeneous Poisson processes occur naturally in various
counting scenarios, for example, as a result of seasonality in rain shower counts,
rush-hours in traffic accident counts, etc., the inhomogeneity may be removed by a
change of time-scale.
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Proposition 5.5 (Homogenization of the Poisson Process). Suppose that X = {Xt :
t ≥ 0} is an inhomogeneous Poisson process with intensity measure ρ(dt) = ρ(t)dt
on Λ = [0,∞). If ρ(t) is strictly positive and

∫∞
0 ρ(s)ds = ∞, then there is a time-

change function τ : [0,∞) → [0,∞) such that X̃ = {Xτ(t) : t ≥ 0} is a Poisson
process with (constant) unit intensity with respect to Lebesgue measure.

Proof. The function γ (t) = ∫ t
0 ρ(s)ds, t ≥ 0, is continuous, one-to-one, and onto

[0,∞). Define τ(t) = γ−1(t), t ≥ 0. From here it is simple to check that X̃ has
non-decreasing sample paths with non-negative, independent Poisson distributed
increments with, X̃0 = 0,E(X̃t − X̃s) = t − s, 0 ≤ s < t . �

In another direction, the Poisson process leads to a natural continuous parameter
generalization of the random walk as follows.

Definition 5.2. Let N = {Nt : t ≥ 0} be a homogeneous Poisson process and let
Y1,Y2, . . . be an i.i.d. sequence in R

n , independent of X . Then the process Xt =∑Nt
j=1 Y j is referred to as a compound Poisson process on R

n .

The sample paths of the compound Poisson process can be depicted as in Figure 1.1,
but with the +1 unit increments now replaced by realizations of Y1,Y2, . . . in the
up or down directions according to their positive or negative values, respectively.

The compound Poisson process enjoys many interesting properties inherited
from the random walk and the Poisson process that are delineated in exercises. In
particular, one can readily check the following property (Exercise) of the distribution
Qt of Xt for each t :

Definition 5.3. A probability distribution Q on the Borel σ -field of R is said to be
infinitely divisible if for each integer n ≥ 1 there is a probability distribution Qn

such that Q is the n-fold convolution Q = Q∗n .

Proposition 5.6. The compound Poisson process X is a process with stationary,
independent increments. For each t > 0, the distribution of Xt is infinitely divisible.

Along these same lines note that, given Nt , the conditional distribution of Xt is
given by an Nt -fold convolution of the distribution Q of Y1. In particular, denoting
the (unconditional) distribution of Xt by Qt , one has the “continuous convolution
property”

Proposition 5.7.

Qt+s = Qt ∗ Qs, s, t ≥ 0. (5.20)

Proof. Simply condition on Nt+s , apply the binomial theorem, and make a change
of variable in the sum as follows: For B ∈ B(Rn),

Qt+s(B) = EQ∗Nt+s (B)
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=
∞∑

k=0

Q∗k(B)
λk(t + s)k

k! e−λ(t+s)

=
∞∑

k=0

λk

k! Q∗k(B)
k∑

j=0

(
k

j

)

t j e−λt sk− j e−λs

= ( ∞∑

j=0

(λt) j

j ! Q∗ j e−λt ∗
∞∑

i=0

(λs)i

i ! Q∗i e−λs)(B)

= Qt ∗ Qs(B). (5.21)

Here the factorization Q∗k = Q∗ j Q∗(k− j) is used as well. �
This structure leads to a special representation of the characteristic function of Xt ,
referred to as a Lévy–Khinchine formula, as follows (Exercise 16).

Proposition 5.8. For the compound Poisson process X one has

Eeiξ Xt = exp{
∫

Rk
(eiξ y − 1)νt (dy)}, ξ ∈ R

n,

where νt (dy) = λt Q(dy), and Q is the distribution of Y1.

Exercises

1. (A Simple Law of Rare Events) Suppose that Xn has a binomial distribution
with parameters n and pn = ν/n for some ν > 0. Use calculus to establish that
limn→∞ P(Xn = k) = νke−ν/k!, k = 0, 1, 2, . . . .[Hint: Use the asymptotic
formula limn→∞(1+ xn

n )
n = ex whenever limn→∞ xn = x .]

2. (Poisson approximation to independent Bernoulli sums) Suppose that
X1, . . . , Xn are independent Bernoulli 0 − 1-valued random variables with
P(X j = 1) = p j , 1 ≤ j ≤ n. Let Y have Poisson distribution with parameter
ν =∑n

j=1 p j . Then |P(∑n
j=1 X j = k)− P(Y = k)| ≤ 2

∑n
j=1 p2

j .

3. (Infinitesimal description of the Poisson process) Suppose that N = {Nt : t ≥
0} is a non-negative integer-valued (counting) stochastic process having non-
decreasing paths with N0+ = 0. Assume that for any 0 = t0 < t1 < · · · < tm ,
the counts Nt j − Nt j−1 , 1 ≤ j ≤ m are independent, and homogeneous in
the sense that the distribution of Nt+Δ − Ns+Δ does not depend on Δ > 0.
Assuming infinitesimal probabilities P(NΔ = 1) = λΔ+ o(Δ), and P(NΔ ≥
2) = o(Δ) as Δ ↓ 0, for some λ > 0, show: (a) d

dt P(Nt = 0) = −λP(Nt =
0), P(N0+ = 0) = 1; (b) d

dt P(Nt = k) = −λP(Nt = k) + λP(Nt =
k − 1), k ≥ 1; (c) Show that the unique solution to this system of differential

equations is given by P(Nt = k) = (λt)k

k! e−λt , t ≥ 0. [Hint: To derive (a), (b)
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consider the Newton quotients defining the indicated derivative and express the
events [Nt+Δ = k] jointly in terms of counts of 0, 1 or more than 2 occurrences
in the interval [t, t +Δ].]

4. Show that one may equivalently define the σ -field G on Γ as the smallest σ -
field such that random variable ω→ γ (ω), given by γ (ω)(t)Xt (ω) in (5.3), is
a measurable function from Ω to Γ .

5. Verify the formula (5.19) for the multivariate moment generation function of
the Poisson random field.

6. Show that the definition of the one-dimensional Poisson random measure given
by (5.18) is a.s. purely atomic with atoms at the arrival times A1, A2, . . . .

7. Suppose that X = {Xt : t ≥ 0} is a time-homogeneous Poisson process with
intensity parameter λ > 0. Show that λ = limn→∞ Xn

n a.s. [Hint: Express Xn

in terms of i.i.d. increments.]
8. The Gamma distribution with parameters λ > 0, ν > 0 has density fν,λ(x) =

λν

Γ (ν)
xν−1e−λx , x ≥ 0. Verify that

∫ ∞

t
fν,λ(s)ds = λ−1 fν,λ(t)+

∫ ∞

t
fν−1,λ(s)ds.

9. Let {Xt : t ≥ 0} be the Poisson process defined by (5.3). Show for 0 ≤ t1 <

t2 < · · · < tm , m ≥ 1,

P
(
Xt1 = k1, . . . , Xtm = km

) =
m∏

j=1

[λ(t j − tt−1)]k j−k j−1

(k j − k j−1)! e−λ(t j−t j−1),

for k0 = 0 ≤ k1 ≤ k2 ≤ · · · ≤ km ∈ Z+, t0 = 0.
10. Let (U(1),U(2), . . .U(k)) be the order statistic from k i.i.d. random variables

uniformly distributed on [0, t]. Show that U( j) has probability density f j (x) =
j
(k

j

)
( x

t )
j−1(1− x

t )
k− j · 1

t , 0 < x ≤ t .
11. (Thinning) Let ε1, ε2, . . . be i.i.d. Bernoulli 0 – 1 valued random variables,

P(εi = 1) = p = 1 − P(εi = 0), i ≥ 1, and independent of the Poisson
process {Xt : t ≥ 0} defined by (5.3). Let N0 = 0, N1 = inf{n ≥ 1 : εn = 1},
Nr = inf{n ≥ Nr−1 + 1 : εn = 1}, r = 2, 3, . . . . Define

T̃0 = T0 + · · · + TN1−1

T̃r = T0 + · · · + TNr+1−1 = T̃r−1 + Tr + · · · + TNr+1−1.

That is, the occurrences of the process {Xt : t ≥ 0} are one-by-one and
independently accepted with probability p or rejected with probability 1 − p;
referred to as independent thinning or independent splitting the process. Define

X̃t =
{

0 if T̃0 > t

sup{n ≥ 1 : T̃0 + · · · + T̃n−1 ≤ t}.
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Show that {X̃t : t ≥ 0} is a Poisson process2 with intensity parameter λ̃ =
pλ. [Hint: Use moment generating functions or characteristic functions. For
independence of inter-arrivals show factorization and argue that this is sufficient
by the uniqueness theorem for such multivariate transforms.]

12. (Age and Residual Lifetime) Let Xt : t ≥ 0 be a time-homogenous Poisson
process with intensity λ > 0, and arrival times T0, T1, . . . . The age of the last
occurrence at time t > 0 is defined by the time since the last occurrence prior
to t , a(t) = t − TN (t)−1. The residual lifetime is defined by r(t) = TN (t) − t .
[Note: The shift in N (t) accounts for the first occurrence being T0.] Show that
a(t) and r(t) are independent, and a(t) ≤ t has an exponential distribution
with parameter λ > 0 truncated at t , and r(t) has an (unrestricted) exponential
distribution with parameter λ. [Hint: For 0 ≤ s1 < t, s2 > 0, express [a(t) ≤
s1, r(t) ≤ s2] in terms of the increments of Xt . The age does not exceed s1 < t
if and only if there is at least one occurrence between time t − s1 and t , while
the residual time does not exceed s2 > 0 if and only if there is at least one
occurrence in time t to t + s2.]

13. (Feller’s Non-explosion Criteria) Suppose that T0, T1, T2, . . . are independent
exponentially distributed random variables with parameters λ0, λ1, λ2, . . . ,
respectively. Define

ζ = T0 + T1 + · · · + Tn + · · · .

(i) Show that P(ζ = ∞) = 1 if and only if
∑∞

j=0
1
λ j = ∞. The event [Yt =

∞] is referred to as explosion3 in finite time. [Hint: Eζ =∑∞
j=0

1
λ j

. So the

condition for P(ζ <∞) = 1 is obvious. Consider Ee−ζ =∏∞
j=0

λ j
1+λ j

=
1/

∏n
j=0(1+ λ−1

j ), and note that
∏n

j=0(1+ λ−1
j ) ≤ e

∑n
j=0

1
λ j .]

(ii) (ii) Newton’s divided differences are recursively defined for a func-
tion f at n + 1 distinct points x0, x1, . . . , xn by [x0, . . . , xn] f =
[x0,...,xn−1] f−[x1,...,xn ] f

x0−xn
, where [x j ] f = f (x j ), j = 0, 1, . . . n. Show by

induction that [x0, . . . , xn] f = ∑n
k=0

f (xk)
D′n(xk )

, where Dn(x) = ∏n
j=0(x −

x j ) and D′n(x) its derivative.
(iii) Let e j (t) = λ j e−λ j t , t ≥ 0. Show that for λi �= λ j , 0 ≤ i, j ≤ n, the pdf

fn = e0 ∗ · · · ∗ en of T0 + · · · + Tn is given by

2For illustration of a contemporary application of the splitting property to “micromobility” see
Fields (2020).
3A clever calculation using differential equations of the probability of explosion in a specified time
t is given in Feller (1968), Vol I.
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fn(t) = (−1)n+1tn
n∏

j=0

λ j [λ0t, . . . , λnt]exp

= (−1)n+1
n∏

j=0

λ j

n∑

k=0

e−λk t
∏

j �=k(λk − λ j )
, exp(x) = e−x , x ≥ 0.

(iv) (Yule Branching Process) Starting with a single progenitor Y0 = 1,
after an exponentially distributed time with parameter λ > 0, the parent
particle dies and produces two offspring. The offspring independently of
one another and the parent follow the identically distributed exponential
lifetime before death and reproduction, from generation to generation. Let
Yt denote the number of particles alive at time t . Show that the process is
non-explosive. [Hint: Represent as above with λn = (n + 1)λ, n ≥ 0.]

14. Suppose that X = {Xt : t ≥ 0} is an inhomogeneous Poisson process with
intensity function ρ(t) on S = [0,∞).

(i) Show that if
∫∞

0 ρ(s)ds < ∞, then P(supt≥0 Xt < ∞) = 1, [Hint: The
sample paths are non-decreasing so that supt≥0 Xt = limt→∞ Xt a.s.] i.e.,
in contrast to explosion, throughout all time at most a finite number of
occurrences can occur.

(ii) Calculate the distribution of the first arrival time A0 of X. In particular,
what is P(A0 = ∞)?

(iii) Show that the conditional distribution of A0 given [A0 < ∞] in the case
ρ(t) = e−t , t ≥ 0 is the Frechet extreme value distribution ee−t

, t ≥ 0.

15. Show that the compound Poisson process has stationary and independent
increments. In particular, show that the distribution Qt of Xt is infinitely
divisible.

16. (Lévy–Khinchine formula: special case) Show that the characteristic function
of the compound Poisson process may be represented in the form Eeiξ Xt =
exp{∫ n

R
(eiξ y − 1)νt (dy)}, ξ ∈ R

n , where νt (dy) = λt Q(dy), and Q is the
distribution of Y1.



Chapter 6
The Kolmogorov–Chentsov Theorem and
Sample Path Regularity

While constructions of probability distributions of stochastic processes
indexed by uncountable parameter spaces, e.g., intervals, can be readily
achieved via the Kolmogorov extension theorem, the regularity of the sample
paths is not mathematically accessible in such constructions, for the simple
reason that sample path properties that depend on uncountably many time
points, e.g., continuity, do not define measurable events in the Kolmogorov
model. In this chapter we consider a criterion, also due to Kolmogorov
(Published in Slutsky (1937)) and Chentsov (1956) for Hölder continuous
versions of processes and random fields. In addition to providing a tool for
construction of k-dimensional Brownian motion, it yields the construction of
continuous random fields such as the Brownian sheet. The chapter concludes
with a demonstration of nowhere differentiability of the (continuous) Brown-
ian paths.

Definition 6.1. A stochastic process (or random field) Y = {Yu : u ∈ Λ} is a
version of X = {Xu : u ∈ Λ} taking values in a metric space if Y has the same
finite dimensional distributions as X .

Theorem 6.1 (Kolmogorov–Chentsov Theorem). Suppose X = {Xu : u ∈ Λ} is a
stochastic process (or random field) with values in a complete metric space (S, ρ),
indexed by a bounded rectangle Λ ⊂ R

k and satisfying

Eρα(Xu, Xv) ≤ c|u − v|k+β, for all u, v ∈ Λ,

where c, α, and β are positive numbers. There is a version Y = {Yu : u ∈ Λ} of X ,
which is a.s. Hölder continuous of any exponent γ such that 0 < γ <

β
α

.
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Proof. Without essential loss of generality, we take Λ = [0, 1]k and the norm | · | to
be the maximum norm given by |u| = max{|ui | : 1 ≤ i ≤ k}, u = (u1, . . . , uk). For
each N = 1, 2, . . . , let L N be the finite lattice { j2−N : j = 0, 1, . . . 2N }k . Write
L = ∪∞N=1L N . Define MN = max{ρ(Xu, Xv) : (u, v) ∈ L2

N , |u − v| ≤ 2−N }.
Since (i) for a given u ∈ L N , there are no more than 3k points in L N such that
|u− v| ≤ 2−N (vi = ui , ui − 2−N , or ui + 2−N for each i), (i i) there are (2N + 1)k

points in L N , and (i i i) for every given pair (u, v), the condition of the theorem
holds, one has by Chebyshev’s inequality that

P(MN > 2−γ N ) ≤ c3k(2N + 1)k(
2−N (k+β)

2−αγ N
). (6.1)

In particular, since γ < β/α,

∞∑

N=1

P(MN > 2−γ N ) <∞. (6.2)

Thus there is a random positive integer N∗ ≡ N∗(ω) and a set Ω∗ with P(Ω∗) = 1,
such that

MN (ω) ≤ 2−γ N for allN ≥ N∗(ω), ω ∈ Ω∗. (6.3)

Fix ω ∈ Ω∗, and let N ≥ N∗(ω). We will see by induction that, for all m ≥ N , one
has

ρ(Xu, Xv) ≤ 2
m∑

j=N

2−γ j , for all u, v ∈ Lm, |u − v| ≤ 2−N . (6.4)

For m = N , this follows from (6.3). Suppose, as an induction hypothesis, that (6.4)
holds for m = N , N + 1, . . . , n. Let u, v ∈ Ln+1, |u − v| ≤ 2−N . Write u =
(i12−n−1, . . . , ik2−n−1), v = ( j12−n−1, . . . , jk2−n−1), where iν, jν, 1 ≤ ν ≤ k,
belong to {0, 1, 2, . . . , 2n+1}. We will find u∗, v∗ ∈ Ln such that |u − u∗| ≤
2−n−1, |v − v∗| ≤ 2−n−1, and |u∗ − v∗| ≤ 2−N . For this, let the ν-th coordinate,
say i∗ν2−n−1 of u∗, be the same as that of u if iν is even; and i∗ν = iν − 1 if iν is
odd and iν ≥ jν , and i∗ν = iν + 1 if iν is odd and iν < jν , ν = 1, . . . , k. Then
|u∗ − u| ≤ 2−n−1, and u∗ ∈ Ln (since i∗ν is even and i∗ν2−n−1 = (i∗ν /2)2−n).
Similarly, define v∗ with the roles of iν and jν interchanged, to get v∗ ∈ Ln and
|v − v∗| ≤ 2−n−1, with, moreover, |u∗ − v∗| ≤ |u − v| ≤ 2−N . Then by (6.3) and
the induction hypothesis,

ρ(Xu, Xv) ≤ ρ(Xu, Xu∗)+ ρ(Xu∗ , Xv∗)+ ρ(Xu∗ , Xv)
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≤ 2−γ (n+1) + 2
n∑

ν=N

2−γ ν + 2−γ (n+1) = 2
n+1∑

ν=N

2−γ ν, (6.5)

completing the induction argument for (6.4), for all ω ∈ Ω∗, m ≥ N + 1, N ≥
N∗(ω). Since 2

∑∞
ν=N 2−γ ν = 2−γ (N−1)(1−2−γ )−1, and L = ∪∞m=N+1Lm , for all

N ≥ N∗(ω), it follows that

sup{ρ(Xu, Xv) : u, v ∈ L , |u − v| ≤ 2−N }
= sup{ρ(Xu, Xv) : u, v ∈ ∪∞m=N+1Lm, |u − v| ≤ 2−N }
≤ 2γ 2−γ N 2γ (1− 2−γ )−1, N ≥ N∗(ω), ω ∈ Ω∗. (6.6)

This proves that on Ω∗, u → Xu is uniformly continuous (from L into (S, ρ))
and is Hölder continuous with exponent γ . Now define Yu := Xu if u ∈ L and
otherwise Yu := lim XuN , with uN ∈ L and uN → u, if u /∈ L . Because of uniform
continuity of u → Xu on L (for ω ∈ Ω∗) and completeness of (S, ρ), the last
limit is well-defined (Exercise 3). For all ω /∈ Ω∗, let Yu be a fixed element of S
for all u ∈ [0, 1]k . Finally, letting γ j ↑ β/α, γ j < β/α, j ≥ 1, and denoting the
exceptional set above as Ω∗

j , one has the Hölder continuity of Y for every γ < β/α

on Ω∗∗ := ∩∞j=1Ω
∗
j with P(Ω∗∗) = 1.

That Y is a version of X may be seen as follows. For any r ≥ 1 and r vectors
u1, . . . , ur ∈ [0, 1]k , there exist u j N ∈ L , u j N → u j as N → ∞ (1 ≤ j ≤
r ). Then (Xu1N , . . . , Xur N ) = (Yu1N , . . . ,Yur N ) a.s., and (Xu1N , . . . , Xur N ) →
(Xu1 , . . . , Xur ) in probability, (Yu1N , . . . ,Yur N ) → (Yu1 , . . . ,Yur ) a.s. (Exer-
cise 4). �

An important consequence of Theorem 6.1 is the construction of Brownian
motion defined in Example 5 of Chapter 1 (see also Exercise 1).

Corollary 6.2 (Brownian Motion). Let X = {Xt : t ≥ 0} be a real-valued Gaussian
process defined on (Ω,F , P), with X0 = 0,EXt = 0, and Cov(Xs, Xt ) = s ∧ t ,
for all s, t ≥ 0. Then X has a version B = {Bt : t ≥ 0} with continuous sample
paths, which are Hölder continuous on every bounded interval with exponent γ for
every γ ∈ (0, 1

2 ).

Proof. Since E|Xt − Xs |2m = c(m)(t − s)m , 0 ≤ s ≤ t , for some constant c(m),
for every m > 0, the Kolmogorov–Chentsov Theorem 6.1 implies the existence of
a version B(0) = {B(0)

t : 0 ≤ t ≤ 1} with the desired properties on [0, 1]. Let
B(n), n ≥ 1, be independent copies of B(0), independent of B(0). Define Bt = B(0)

t ,
0 ≤ t ≤ 1, and Bt = B(0)

1 +· · ·+B(n−1)
1 +B(n)

t−[t], for t ∈ [n, n+1), n = 1, 2, . . . .�

Corollary 6.3 (Brownian Sheet). Let X = {Xu : u ∈ [0,∞)2} be a real-valued
Gaussian random field satisfying EXu = 0, Cov(Xu, Xv) = (u1 ∧ v1)(u2 ∧ v2)

for all u = (u1, u2), v = (v1, v2). Then X has a continuous version on [0,∞)2,
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which is Hölder continuous on every bounded rectangle contained in [0,∞)2 with
exponent γ for every γ ∈ (0, 1

2 ).

Proof. First let us note that on every compact rectangle [0, M]2, E|Xu − Xv|2m ≤
c(M)|u − v|m , for all m = 1, 2, . . . . For this it is enough to check that on each
horizontal line u = (u1, c), 0 ≤ u1 < ∞, Xu is a one-dimensional Brownian
motion with mean zero and variance parameter σ 2 = c for c ≥ 0. The same holds
on vertical lines. Hence

E|X(u1,u2) − X(v1,v2)|2m

≤ 22m−1(
E|X(u1,u2) − X(v1,u2)|2m + E|X(v1,u2) − X(v1,v2)|2m)

≤ 22m−1c(m)
(
um

2 |u1 − v1|m + vm
1 |u2 − v2|m

)

≤ 22m−1c(m)Mm2|u − v|m,

where u = (u1, u2), v = (v1, v2). �
Remark 6.1. One may define the Brownian sheet on the index set ΛR of all
rectangles R = [u, v), with u = (u1, u2), v = (v1, v2), 0 ≤ ui ≤ vi < ∞
(i = 1, 2), by setting

X R ≡ X[u,v) := X(v1,v2) − X(v1,u2) − X(u1,v2) + X(u1,u2). (6.7)

Then X R is Gaussian with mean zero and variance |R|, the area of R. Moreover,
if R1 and R2 are non-overlapping rectangles, then X R1 and X R2 are independent.
More generally, Cov(X R1, X R2) = |R1 ∩ R2| (Exercise 5). Conversely, given a
Gaussian family {X R : R ∈ ΛR} with these properties, one can restrict it to the
class of rectangles {R = [0, u) : u = (u1, u2) ∈ [0,∞)2} and identify this with
the Brownian sheet in corollary 6.3. It is simple to check that for all n-tuples of
rectangles R1, R2, . . . , Rn ⊂ [0,∞)2, the matrix ((|Ri ∩ R j |))1≤i, j≤n is symmetric
and non-negative definite (Exercise 5). So the finite dimensional distributions of
{X R : R ∈ ΛR} satisfy Kolmogorov’s consistency condition.

The estimates derived in the proof of the Kolmogorov–Chentsov theorem easily
yield the following useful result, which is made use of in a later chapter to prove a
functional central limit theorem.

Proposition 6.4. Let Λ ⊂ R
k be a bounded rectangle, and let X (n) = {X (n)

u : u ∈
Λ}, n ≥ 1, be a sequence of continuous processes with values in a complete metric
space (S, ρ) satisfying

Eρα(X (n)
u , X (n)

v ) ≤ c|u − v|k+β, for all u, v ∈ Λ, n ≥ 1,

for some positive numbers c, α, β. Then, for every given ε > 0 and 0 < η < 1,
there is a δ > 0 such that
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P(sup{ρ(X (n)
u , X (n)

v ) : u, v ∈ Λ, |u − v| ≤ δ} > ε) < η, for all n ≥ 1.

Proof. Since the estimates obtained for the proof of Theorem 6.1 depend only on
the constants c, α, and β, the asserted bound on the probability is proved in the
same way as one would prove it for X in place of X (n). Specifically, given ε > 0,
η < 1, find N (η) such that, for a given γ ∈ (0, β/α),

∑∞
N=N (η) θ(N ) < η,

where θ(N ) is the right side of the inequality (6.1). This provides the asserted
probability bound with (1− 2−γ )−12γ 2−γ N (η) in place of ε; recall the inequalities
for the induction argument leading to uniform continuity on Ω∗ in the proof of
Theorem 6.1. If this last quantity is larger than ε, then find N (ε, η) ≥ N (η) such
that (1−2−γ )2γ 2−γ N (ε,η) ≤ ε. Then the asserted bound holds with δ = 2−N (ε,η).�

We conclude this chapter with some basic properties of multidimensional
Brownian motions.

Definition 6.2. Let D be a symmetric non-negative definite k × k matrix. A k-
dimensional Brownian motion with drift μ and diffusion coefficient matrix D is a
stochastic process {Xt : t ≥ 0} with state space R

k having continuous sample paths
and independent Gaussian increments with mean and covariance of an increment
Xt+s − Xs being tμ and tD, respectively. If X0 = x, then this Brownian motion is
said to start at x. A Brownian motion starting at 0 with zero drift and diffusion
coefficient D = I is called the standard k-dimensional Brownian motion and
denoted {Bt : t ≥ 0}. The standard Brownian motion started at x will be denoted
Bx

t := x+ Bt , t ≥ 0.

Observe that since uncorrelated jointly distributed Gaussian random variables
are independent, the k component processes of a k-dimensional standard Brownian
motion are easily checked to be independent one-dimensional standard Brownian
motions. Moreover, for a given drift μ ∈ R

k and non-negative definite symmetric

matrix D with “square-root” D
1
2 , i.e. D

1
2 D

1
2

t = D, the process defined by

Xx
t := x+ μt + D

1
2 Bt , t ≥ 0, (6.8)

is k-dimensional Brownian motion started at x ∈ R
k with drift μ and diffusion

matrix D.

Remark 6.2. A glimpse at a fundamentally important connection with analysis and
partial differential equations can be observed by checking that, in the case that D
is nonsingular, the pdf y → p(t; x, y) of Xt starting at X0 = x solves the heat
equation

∂p

∂t
= (2π)−

k
2 (detD)−

1
2 exp{

k∑

i, j=1

(yi − xi − μi t)ci j (y j − x j − μ j t)}
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=
k∑

i=1

μi
∂p

∂xi
+

k∑

i, j=1

Di j
∂2 p

∂xi∂x j

= −
k∑

i=1

μi
∂p

∂yi
+

k∑

i, j=1

Di j
∂2 p

∂yi∂y j
, (6.9)

where D−1 = ((ci, j )). As equations in either the so-called spatial backward
(transition probability) variable x or the forward variable y, these two equations
are also referred to as Kolmogorov’s backward and forward equations for Brownian
motion, respectively.

The following basic properties of Brownian motion are essentially direct conse-
quences of the definition.

Theorem 6.5. Let B be a standard k–dimensional Brownian motion. Then

1. (Symmetry). Wt := −Bt , t ≥ 0, is a standard Brownian motion.
2. (Homogeneity and Independent Increments). {Bt+s − Bs : t ≥ 0} is a standard

Brownian motion independent of {Bu : 0 ≤ u ≤ s}, for every s ≥ 0,

3. (Scale Change). For every λ > 0, {B(λ)t := λ− 1
2 Bλt : t ≥ 0} is a standard

Brownian motion.
4. (Time-Inversion). Wt := tB1/t , t > 0, W0 = 0, is a standard Brownian motion.
5. (Rotation Invariance). Let O be a k × k orthogonal matrix (i.e., OOt = Ik , the

k × k identity matrix). Then OB = {OBt : t ≥ 0} is a standard k–dimensional
Brownian motion.

Proof. With the exception of the property of rotation invariance, these properties
are left as exercises.1 For rotation invariance, first, note that since x → Ox is
continuous, the paths of the composite map t → OBt are continuous. Second,
one may observe, e.g., using characteristic functions, that since O is a nonsingular
matrix with determinant one, the distribution of the increments OBt j+1 − OBt j =
O(Bt j+1−t j ), 0 = t0 < t1 < t2 · · · < tm , remains independent and Gaussian.
Moreover, for each t >), OBt has mean vector EOBt = OEBt = O0 = 0, and
variance–covariance matrix E(OBt )(OBt )

t = EOBBtOt = OtIOtr = tI. �
Remark 6.3. The continuous but otherwise highly irregular behavior of the sample
paths of observed particle suspensions did not go unnoticed by the experimentalists
who set out to document the validity of Einstein’s model. Most notable among
these efforts in the early twentieth century were those of Perrin whose work on this
problem led to experimental determination of Avogadro’s constant. In his research
monograph,2 Perrin exclaims: “The trajectories are confused and complicated so

1The proofs are given in BCPT, p. 141–142, as well.
2Perrin (1913) is the original French publication; the quote here is taken from the English
translation, Perrin (1929).
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often and so rapidly that it is impossible to follow them; the trajectory actually
measured is very much simpler and shorter than the real one. Similarly, the apparent
mean speed of a grain during a given time varies in the wildest way in magnitude
and direction, and does not tend to a limit as the time taken for an observation
decreases, as may be easily shown by noting, in the camera lucida,3 the positions
occupied by a grain from minute to minute, and then every five seconds, or, better
still, by photographing them every twentieth of a second, as has been done by
Victor Henri Comandon, and de Broglie when kinematographing the movement. It
is impossible to fix a tangent, even approximately, at any point on a trajectory, and
we are thus reminded of the continuous underived functions of the mathematicians.”
That such sample path behavior is intrinsic to the definition of Brownian motion is
mathematically confirmed by the fact that, as we will see below, with probability
one, the Brownian paths (in one-dimension) are of unbounded variation in every
non-degenerate interval.

Observe that the sample paths t → Bt (ω) of the one-dimensional Brownian
motion Bx := {Bt : t ≥ 0} starting at x are required by definition to be elements of
the space C[0,∞) of continuous real-valued functions on [0,∞). The distribution
of this process is a probability measure Qx = P ◦ Bx−1 on C[0,∞) induced by the
map h(ω) = {Bt (ω) : t ≥ 0}, ω ∈ Ω . That is, letting G be the σ -field of C[0,∞)

generated by finite dimensional subsets of the form F = {x ∈ C[0,∞) : x(ti ) ∈
Ci , i = 1, . . . ,m}, 0 < t1 < t2 < · · · < tm , Ci ∈ B, (Borel σ -field B on R)
1 ≤ i ≤ m, Qx is uniquely specified by the finite dimensional (path) probabilities

Qx (F) = P(Bti ∈ Ci , i = 1, . . . ,m). (6.10)

Accordingly, the distribution Q = Q0 of standard Brownian motion started at 0 is a
probability on the path space C[0,∞), referred to as Wiener measure.

Similarly the distribution of Brownian motion on a finite interval [0, T ] may be
viewed as a probability measure on the space C[0, T ] induced by the map ω →
(Bt (ω) : 0 ≤ t ≤ T ).

From the point of view of weak convergence theory to be applied in a later
chapter, it will be useful to view the induced distributions as probabilities on metric
spaces C[0,∞) and C[0, T ]. A metric for C[0, T ] is dT (x, y) = max0≤t≤T |x(t)−
y(t)| and for C[0,∞) is d(x, y) =∑∞

N=1 2−N dN (x,y)
1+dN (x,y)

. Convergence in the latter
metric d(x, y) means uniform convergence on compact subintervals [0, N ] for all
N ≥ 0. The Borel σ -fields for these metrics coincide with the σ -fields generated by
finite dimensional events (Exercise 9).

We close this chapter with a basic mathematical development to complement the
empirical observations described in Remark 6.3. Let {Bt : t ≥ 0} denote a one-
dimensional standard Brownian motion starting at zero.

3The experiment was repeated with modern upgrades of the experimental apparatus (camera) in
Newburgh et al. (2006).
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Proposition 6.6. Define

Vn =
2n
∑

i=1

|Bi/2n − B(i−1)/2n |.

Then,

1. EVn = 2n/2
E|B1|.

2. Var Vn = Var |B1| = 1.
3. With probability one, {Bt : t ≥ 0} is of unbounded variation on 0 ≤ t ≤ 1.
4. Outside a set of probability zero, every Brownian path ω is of unbounded

variation on every non-degenerate interval [a, b], 0 ≤ a < b ≤ 1, where a
and b may depend on ω.

Proof. The calculation EVn = 2n/2
E|B1| = 2n/2+1 follows immediately from sta-

tionary increments and scaling properties, and Var Vn = Var |B1| = 1 follows from
independent increments and scaling properties. Since the partition into intervals of
length 2−(n+1) is a refinement of the partition into intervals of length 2−n , one has
Vn+1 ≥ Vn , n ≥ 1. Thus limn→∞ Vn exists but may be infinite, almost surely.
Using Chebyshev’s inequality, one has P(|Vn − EVn| > n) ≤ n−2. Thus, by the
Borel–Cantelli lemma I, P(Vn > 2

n
2+1 − n i.o.) = 0. It follows that Vn →∞ with

probability one. By scaling applied to all intervals with a, b rational, it therefore
follows that outside a set of probability zero, Brownian paths are of unbounded
variation on every non-degenerate such interval [a, b], 0 ≤ a < b ≤ t, t > 0.
Property 4 follows from this (Exercise 10). �

Exercises

1. Prove that the stochastic process constructed in Corollary 6.2 has independent
mean zero Gaussian increments over disjoint time intervals, with the variance
of the increment Bt+s − Bt being s.

2. Show that positivity of β is necessary for the Kolmogorov–Chentsov theorem
by considering the Poisson process.

3. Let f be a uniformly continuous function defined on a dense subset D of a
metric space (Λ, d) into a complete metric space (S, ρ).

(a) Prove that f has a unique extension as a (uniformly) continuous function
from Λ into S.

(b) If f is Hölder continuous of exponent γ on S, show that this is true of its
extension to Λ as well.

4. Amplify the last sentence in the proof of the Kolmogorov–Chentsov The-
orem 6.1. [Hint: By Chebyshev’s inequality, the condition of the theorem
implies that for any ε > 0, P

(
ρ(Xu j N , Xu j ) > ε

) → 0, as N → ∞, for
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all j = 1, 2, . . . ,m. The convergence Yu j N → Yu j follows from the well-
definedness of the limit.]

5. In the context of Remark 6.1, show that (a) ((|Ri ∩ R j |))1≤i, j≤n is a non-
negative definite n × n matrix. [Hint: Note that

∑
1≤i, j≤n ci c j |Ri ∩ R j | =

∫
[0,∞)2

(∑
ci1Ri (x)

)2
dx .] (b) Complete the construction of Brownian sheet

on Λ = [0,∞)2.

6. Let {Bt : t ≥ 0} denote standard Brownian motion starting at 0. Verify that
(Bt1, . . . , Btm ) has an m-dimensional Gaussian distribution and calculate the
mean and the variance–covariance matrix using the fact that the Brownian
motion has independent Gaussian increments.

7. Let {Xt : t ≥ 0} be a real-valued stochastic process with stationary and
independent increments starting at 0 with EX2

s < ∞ for s > 0. Assume EXt

and EX2
t are continuous functions of t .

(i) Show that EXt = mt for some constant m.
(ii) Show that Var Xt = σ 2t for some constant σ 2 ≥ 0. Also EX2

t = σ 2t +
m2t2 is linear if and only if m = 0.

8. Let {Xx
t : t ≥ 0} be the k-dimensional Brownian motion with drift μ and

diffusion coefficient matrix D.

(i) Calculate the mean of Xx
t and the variance–covariance matrix of Xx

t .
(ii) In the case μ = 0,D = � of standard Brownian motion, show that for

each fixed t > 0, Xt||Xt || is uniformly distributed over the k-dimensional
sphere. [Hint: Recall the rotation invariance property of standard Brownian
motion.]

9. (i) For T > 0, let GT denote the σ–field of subsets of C[0, T ] generated by
finite dimensional events of the form

F = {x ∈ C[0, T ] : x(ti ) ∈ Bi , i = 1, . . . ,m},

where 0 < t1 < t2 < · · · < tm ≤ T , Bi ∈ B. Show that GT coincides with
the Borel σ–field on the metric space C[0, T ] for the metric dT (x, y) =
max0≤t≤T |x(t)− y(t)|.

(ii) Let G be the σ–field of subsets of C[0,∞) generated by events of the form

F = {x ∈ C[0,∞) : x(ti ) ∈ Bi , i = 1, . . . ,m},

where 0 < t1 < t2 < · · · < tm , Bi ∈ B. Show that G coincides with
the Borel σ–field on the metric space C[0,∞) for the metric d(x, y) =
∑∞

N=1 2−N dN (x,y)
1+dN (x,y)

.
10. Let f be a real valued continuous function on [c, d], c < d. Define the variation

v( f ) of f on [c, d] by v( f ) = sup v( f : πk), where the supremum is over
all partitions πk of [c, d] of the form c = a0 < a1 < . . . ak = d, k ≥ 1,
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and v(πk) = ∑k
i=1 | f (ai ) − f (ai−1) |. Also, let Vn( f ) = ∑2n

j=1 | f (c +
(d − c) j2−n)− f (c + (d − c) j2−n)− f (c + ( j − 1)(d − c)2−n) |, V ( f ) =
limn−∞ Vn( f ). Show that v( f ) = V ( f ). [Hint: Fix ε > 0. For any given πk of
the above form, there exists δ(ε) > 0 such that | f (x)− f (y)| < ε

2k if |x− y| ≤
δ(ε). Find n = n(ε) for which each ai is within a distance δ(ε) from a point of
the form c + (d − c) j2−n( j = 0, 1, . . . , 2−n). Then Vn( f ) ≥ v( f : πk) − ε,
so that V ( f ) ≥ v( f )− ε.]



Chapter 7
RandomWalk, Brownian Motion, and
the Strong Markov Property

In this chapter the strong Markov property is derived as an extension of the
Markov property to certain random times, called stopping times. A number
of consequences of the strong Markov property of Brownian motion and
the simple random walk are derived. A derivation of the law of the iterated
logarithm for Brownian motion is included in this chapter, from which some
fine scale sample path properties of Brownian motion are derived as well.

Discrete parameter Markov processes on general state spaces were introduced
in Chapter 1. With this as background, let us turn to a strengthened and more
useful version of the (homogeneous) Markov property. For this let Pz denote
the distribution of a Markov process X = {Xn : n ≥ 0}, i.e., a probability
on the product space (S∞,S⊗∞), with transition probability p(x, dy) and initial
distribution P(X0 = z) = 1. Also an expected value of a real-valued function (on
S∞) with respect to Pz is denoted Ez , z ∈ S.

Definition 7.1. Fix m ≥ 0. The after-m (future) process is defined by X+m :=
{Xn+m : n ≥ 0}.
Definition 7.2 (Markov Property). We say that X = {Xn : n ≥ 0} has the
(homogeneous) Markov Property if for every m ≥ 0, the conditional distribution
of X+m , given the σ−field Fm = σ {Xn : n ≤ m}, is PXm , i.e., equals Py on the set
[Xm = y].

Suppose now that {Zn : n ≥ 1} is an i.i.d. Rk-valued sequence. Let Z0 be an
R

k-valued random variable, independent of {Zn : n ≥ 1}. Recall that the stochastic
process S0 = Z0, Sn = Z0 + Z1 + · · · + Zn , n ≥ 1, defines a (general) random
walk on R

k . As above, let Fm = σ(S j : j = 0, 1, . . .m), m ≥ 0.
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Remark 7.1. As noted earlier, we write Ex for expected values with respect to Px .
Write S = R

k , and let S be the Borel σ -field of Rk . Also let S∞ = (Rk)Z+ . One
proof of the following result may be given by showing that the Markov property
of Definition 1.3 of Chapter 1, which may be called the ordinary Markov property,
implies the strengthened version given by Definition 7.2 (see Chapter 1, Exercise 1).
On the other hand, a direct proof is given below.

Proposition 7.1 (Markov Property of the Random Walk). A random walk has the
Markov property of Definition 7.2.

Proof. Let f be an arbitrary real-valued bounded measurable function on Ω̃ = S∞,
with σ -field S⊗∞. One may express f (S+m ) ≡ f (Sm, Sm + Zm+1, Sm + Zm+1 +
Zm+2, . . . ) as ψ(U, V ), where U = Sm , V = (Zm+1, Zm+2, . . . ), and ψ is a real-
valued function defined by ψ(x0, z1, z2, . . . ) = f (x0, x0 + z1, x0 + z1 + z2, . . . ).
Let G = Fm = σ(S j : 0 ≤ j ≤ m). Since V is independent of G, it follows from
the substitution property for conditional expectations that

E
[

f (S+m )|G
] ≡ E

[
ψ(U, V )|G] = h(U ) ≡ h(Sm),

where h(y) = Eψ(y, V ) ≡ E f (y, y+ Zm+1, y+ Zm+1+ Zm+2, . . . ) = E f (y, y+
Z1, y + Z1 + Z2, . . . ) = Ey f . �

Our next task is to further strengthen the Markov property by introducing an
extremely useful concept of a stopping time, sometimes also called a Markov time.
Consider a sequence of random variables {Xn : n = 0, 1, . . .}, defined on some
probability space (Ω,F , P). Stopping times with respect to {Xn}∞n=0 are defined as
follows. Denote by Fn the σ−field σ {X0, . . . , Xn} comprising all events in F that
depend only on the random variables {X0, X1, . . . , Xn}.
Definition 7.3. A stopping time τ for the process {Xn}∞n=0 is a random variable
taking non-negative integer values, including possibly the value +∞, such that

[τ ≤ n] ∈ Fn (n = 0, 1, . . .). (7.1)

Observe that (7.1) is equivalent to the condition

[τ = n] ∈ Fn (n = 0, 1, . . .), (7.2)

since Fn are increasing σ−fields (i.e., Fn ⊂ Fn+1) and τ is integer-valued.

Informally, (7.1) says that, using τ , the decision to stop or not to stop by time
n depends only on the observations X0, X1, . . . , Xn . An important example of a
stopping time is the first passage time τB to a (Borel) set B ⊂ R

1,

τB := inf{n ≥ 0 : Xn ∈ B}. (7.3)
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If Xn does not lie in B for any n, one takes τB = ∞. Sometimes [X0 ∈ B] �= ∅
and the infimum in (7.3) is taken over {n ≥ 1 : Xn ∈ B}, in which case we call
it the first return time to B, denoted ηB . A less interesting but useful example of a
stopping time is a constant time τ := m where m is a fixed positive integer. It is also
useful to make note that if τ1, τ2 are stopping times then so is the arithmetic sum
τ1 + τ2, as well as τ1 ∧ τ2 := max{τ1, τ2}, and τ1 ∨ τ2 := min{τ1, τ2} (Exercise 2).

One may define, for every positive integer r , the r th passage time τ
(r)
B to B

recursively, by

τ
(1)
B := τB, τ

(r)
B := inf{n > τ

(r−1)
B : Xn ∈ B} (r = 2, . . .). (7.4)

Again, if Xn does not lie in B for any n > τ
(r−1)
B , take τ (r)B = ∞. Also note that if

τ
(r)
B = ∞ for some r , then τ (r

′)
B = ∞ for all r ′ ≥ r . It is a simple exercise to check

that each τ (r)B is a stopping time (Exercise 1).

Definition 7.4. Given a stopping time τ , the pre-τ σ−field Fτ is defined by

Fτ = {A ∈ F : A ∩ [τ = m] ∈ Fm,∀m ≥ 0}. (7.5)

The after-τ process X+τ = {Xτ , Xτ+1, Xτ+2, . . . } is well-defined on the set [τ <

∞] by X+τ = X+m on [τ = m].
Remark 7.2. Fτ is determined by the value of τ and X0, X1, . . . , Xτ on the set
[τ <∞]. For if τ = m, then A ∩ [τ = m] ∈ σ(X j : 0 ≤ j ≤ m).

Theorem 7.2 (Strong Markov Property1). Let τ be a stopping time for the process
{Xn : n ≥ 0}. If this process has the Markov property of Definition 7.2, then, on
[τ < ∞], the conditional distribution of the after-τ process X+τ , given the pre-
τ σ−field Fτ , is PXτ .

Proof. Let f be a real-valued bounded measurable function on (S∞,S⊗∞), and let
A ∈ Fτ . Then

E(1[τ<∞]1A f (X+τ )) =
∞∑

m=0

E(1[τ=m]1A f (X+m ))

=
∞∑

m=0

E(1[τ=m]∩AEXm f )

=
∞∑

m=0

E(1[τ=m]∩AEXτ f ) = E(1[τ<∞]1AEXτ f ). (7.6)

1Although informally used by some authors earlier, the precise derivation of the strong Markov
property is due independently to Dynkin and Yushekivic (1956), and Blumenthal (1957).
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The second equality follows from the Markov property for random walk proven
above since A ∩ [τ = m] ∈ Fm . Since f is an arbitrary bounded Borel measurable
function it follows that the conditional distribution of X+τ given Fτ is given by
PXτ . �

With this and Proposition 7.1 one has the following.

Corollary 7.3. The random walk has the strong Markov property.

The following example illustrates the utility of the strong Markov property in
a standard calculation. The result was derived in Chapter 2, Corollary 2.4, using
Proposition 2.3. Here we present a more detailed proof. See Exercise 6 for another
application for simple random walk.

Example 1 (Recurrence of Simple Symmetric Random Walk). Consider the simple
symmetric random walk S+0 = {Sn : n ≥ 0} on Z started at x . Let τy := inf{n :
Sn = y} for y ∈ Z. Suppose one wishes to prove that Px (τy < ∞) = 1 for y ∈ Z.
Let a < x < y. By the Markov property,

ϕ(x) := Px (S
+
0 reaches y before a)

= Px (S
+
1 reaches y before a)

= Ex Px (S
+
1 reaches y before a)|σ(S1))

= Exϕ(S1)

= Exϕ(x + Z1); Definition 7.2

= 1

2
ϕ(x + 1)+ 1

2
ϕ(x − 1) (7.7)

with boundary values ϕ(y) = 1, ϕ(a) = 0. Solving one obtains ϕ(x) = (x−a)/(y−
a). Thus, for every x < y, Px (τy < ∞) = 1 follows by letting a → −∞ using
basic “continuity properties” of probability measures. Similarly, letting y → ∞ in
1 − ϕ(x), one gets Px (τa < ∞) = 1 for all a < x . Finally, Px (τ

(1)
x < ∞) = 1 is

shown by conditioning on S1 (Exercise 3). Hence Px (τ
(1)
y < ∞) = 1 for all x, y.

While this calculation only required the Markov property, next consider the problem
of showing that the process will return to y infinitely often. One would like to argue
that conditioning on the process up to its return to y, it merely starts over. This of
course is the strong Markov property. So let us examine carefully the calculation to
show that the r−th passage time to y, τ (r)y <∞ a.s. for every r = 1, 2, . . . . Letting

τ
(2)
y := inf{n ≥ 1 : (S+

τ
(1)
y
)n = y} denote the first return time to y of the process

S+
τ
(1)
y
, one has
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Px (τ
(2)
y <∞) = Ex [Px (τ

(2)
y <∞|F

τ
(1)
y
)]

= Ex Pz(τy <∞)|z=S
τ
(1)
y
=y (strong Markov property)

= Ex Py(τ
(1)
y <∞) = 1. (7.8)

Similarly, S
τ
(1)
y
= y a.s.

Now this argument remains valid if one replaces τ (1)y by τ (r−1)
y and τ (2)y by τ (r)y

and assumes that τ (r−1)
y <∞ almost surely. Hence, by induction, Px (τ

(r)
y <∞) =

1 for all positive integers r . This is equivalent to the recurrence of the state y in the
sense that

Px (Sn = y for infinitely many n) = Px (∩∞r=1[τ (r)y <∞]) = 1.

Remark 7.3. The Markov property in Definition 7.2 is sometimes defined with
respect to a filtration, i.e., an increasing family of σ−fields F1 ⊂ F2 ⊂ · · · , such
that σ(X j : 0 ≤ j ≤ m) ⊂ Fm for all m. The strong Markov property expressed
by Theorem 7.2 then holds with respect to the σ−fields Fτ as defined in (7.2), with
this filtration {Fm : m ≥ 0} in place of {σ(X j : 0 ≤ j ≤ m) : m ≥ 0}. For example,
one may take Fm to be the P−completion2 of σ(X j : 0 ≤ j ≤ m), for m ≥ 0.
Another example is Fm = σ(X j : 0 ≤ j ≤ m) ∨ G, where G ⊂ F is a σ−field
independent of {X j : j ≥ 0}.

Let {Xt : t ∈ Λ} be a stochastic process defined on (Ω,F , P) with parameter
space Λ = [0, T ], or [0,∞), having state space (S,S), where S is a Polish space
and S is its Borel σ -field. For present purposes it is enough to assume that (1) the
map ω → Xt (ω), t ∈ Λ, is measurable on Ω into a space Γ of right-continuous
functions with a σ -field C, (2) the set C of continuous functions on Λ into S is
a subset of Γ and the Borel σ -field of C is contained in C, and (3) the finite-
dimensional projections γ → (γ (t1), . . . , γ (tn)) on Γ into (S{t1,...,tn},S⊗{t1,...,tn}),
determine C, i.e., σ(∪S⊗{t1,...,tn} : 0 < t1 < t2 < · · · < tn, n ≥ 1) = C.

Remark 7.4. One may, in particular, take Γ to be the Skorokhod space 3 of all right-
continuous functions with left-hand limits (cadlag in French), which is a Polish
space, with C its Borel σ -field. It is known that C is a closed subset of Γ and the
relative topology of C is the uniform topology (on compact subsets of Λ).

2See BCPT p. 225, for the measure-theoretic completion of σ -fields. In particular, completeness
can always be achieved and there is no loss in generality in assuming that the underlying probability
space (Ω,F, P) is complete from the outset.
3Skorokhod (1956). In the same issue, the paper Kolmogorov (1956) introduced an equivalent
metric which also makes it a complete metric space A detailed account of the Skorokhod topology
is given in Billingsley (1968).
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Suppose now that {Xt : t ∈ Λ} has the Markov property as stated in
Definition 1.4 of Chapter 1. The following is a strengthened version of that property,
most aptly described on the parameter space Λ = [0,∞). For the statement let
Fs = σ(Xu : 0 ≤ u ≤ s), X+s = (Xs+u : u ≥ 0), i.e., the after-s process. Let
Px denote the distribution of the process {Xt : t ∈ Λ} when X0 = x . Note that
Px is the probability measure on (Γ, C) induced by the map ω → Xt (ω), t ∈ Λ,
with X0(ω) = x , for P-a.s. all ω ∈ Ω . More generally, Pμ is the distribution of
the process when X0 has (initial) distribution μ. Unless otherwise specified, we will
assume that the Markov process {Xt : 0 ≤ t < ∞} is time-homogeneous, i.e., the
conditional distribution of Xs+t given Fs , is p(t; x, dy) on [Xs = x]. Note also that
the Markov property in Definition 1.4 refers to the collection of probability measures
{Pμ : μ is a probability measure on(S,S)}, including all Px = Pδx , x ∈ S. As a
convention, the process {Xt : t ≥ 0} is generally referred to as a Markov process
whatever be the initial state X0, unless one is specified.

Proposition 7.4 (Markov Property for Right-Continuous Stochastic Processes).
Suppose that {Xt : 0 ≤ t < ∞} is a stochastic process satisfying conditions
(1)–(3) of the paragraph before Remark 7.4 above, with the Markov property of
Definition 1.4 (Chapter 1). Then the conditional distribution of X+s given Fs is PXs ,
i.e., Px on [Xs = x].
Proof. Let 0 ≤ s1 < s1 < · · · < sm = s, and t j = s + u1 + · · · + u j ,
1 ≤ j ≤ n, for ui > 0, 1 ≤ i ≤ n. We first show that the conditional
distribution of (Xt1 , . . . , Xtn ) given σ(Xs1 , Xs2 , . . . , Xsm ) is the PXs -distribution
of (Xu1 , Xu1+u2 , . . . , Xu1+u2+···+un ), namely, p(u1; x, dy1)p(u2; y1, dy2) · · ·
p(un; yn−1, dyn). But this follows essentially as in the proof for discrete
parameter case (Chapter 1), replacing p(x, dy) by p(u1; x, dy1), p(u2; y1, dy2),
. . . , p(un; yn−1, dyn), successively (Exercise 7). By the property (3) above, this
proves the assertion (Exercise 7). �
Corollary 7.5 (Markov Property of Brownian Motion). The conditional distribution
of (Bs)

+ = {Bs+t : t ≥ 0} given Fs is PBs .

Proof. Although the strengthened Markov property of Brownian motion on R
k , with

arbitrary drift parameter μ and diffusion matrix Σ , is an immediate consequence
of Proposition 7.4, we give a direct proof here due to its importance. Without
loss of generality, first consider the standardized case μ = 0, Σ = 1k , the k-
dimensional identity matrix. The general case follows easily from the standardized
case (Exercise 7). We can mimic the proof of Proposition 7.1. Let f be a real-
valued bounded measurable function on C([0,∞) : Rk). Then E f

(
(Bs)

+|Fs
) =

E
(
ψ(U, V )|Fs

)
, where U = Bs , V = {Bs+t − Bs : t ≥ 0}, ψ(y, ω) := f (ωy), y ∈

R, ω ∈ C[0,∞), and ωy ∈ C[0,∞) by ωy(t) = ω(t) + y. By the substitution
property for conditional expectation, one has

E
(
ψ(U, V )|Fs

) = h(U ) = h(Bs),
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where

h(y) = Eψ(y, V ) = Eψ(y, {Bt : t ≥ 0}) = E f (B + y) =
∫

C[0,∞)

f d Py .

�
As will be illustrated by examples in this chapter, it is sometimes useful to extend

the definition of standard Brownian motion as follows.

Definition 7.5. Let (Ω,F , P) be a probability space and Ft , t ≥ 0, a filtration.
The k−dimensional standard Brownian motion with respect to this filtration is a
stochastic process {Bt : t ≥ 0} on (Ω,F , P) having (i) stationary, independent
Gaussian increments Bt+s− Bs with mean zero and covariance matrix (t−s)Ik; (ii)
a.s. continuous sample paths t → Bt on [0,∞)→ R

k; and (iii) for each t ≥ 0, Bt

is Ft -measurable and Bt − Bs is independent of Fs, 0 ≤ s < t. Taking B0 = 0 a.s.,
then Bx := {x + Bt : t ≥ 0}, is referred to as the standard Brownian motion started
at x ∈ R

k (with respect to the given filtration).

For example, one may take the completion Ft = σ(Bs : s ≤ t), t ≥ 0, of
the σ−field generated by the coordinate projections t → ω(t), ω ∈ C[0,∞).

Alternatively, one may have occasion to use Ft = σ(Bs, s ≤ t)∨G where G is some
σ−field independent of G. Recall also the right-continuous filtration Ft+, t ≥ 0,
introduced in the previous chapter in connection with first passage times. The
definition of the Markov property can be modified accordingly as follows.

Proposition 7.6. The Markov property of Brownian motions Bx on R
k defined on

(Ω,F , P) holds with respect to the filtration

Ft+ :=
⋂

ε>0

Ft+ε, (t ≥ 0), (7.9)

where Ft = Gt := σ(Bu : 0 ≤ u ≤ t), or Ft is the P–completion of Gt .

Proof. It is enough to prove that Bt+s − Bs is independent of Fs+ for every t > 0.
Let G ∈ Fs+ and t > 0. For each ε > 0 such that t > ε, G ∈ Fs+ε, so that if
f ∈ Cb(R

k) one has

E(1G f (Bt+s − Bs+ε)) = P(G) · E f (Bt+s − Bs+ε).

Letting ε ↓ 0 on both sides,

E(1G f (Bt+s − Bs)) = P(G)E f (Bt+s − Bs).

�
One may define the “past up to time τ” as the σ−field of events Fτ given by
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Fτ := σ(Zt∧τ : t ≥ 0). (7.10)

The stochastic process {Z̃t : t ≥ 0} := {Zt∧τ : t ≥ 0} is referred to as the process
stopped at τ . Events in Fτ depend only on the process stopped at τ . The stopped
process contains no further information about the process {Zt : t ≥ 0} beyond the
time τ . Alternatively, a description of the past up to time τ which is often more
useful for checking whether a particular event belongs to it may be formulated as
follows.

Definition 7.6. Let τ be a stopping time with respect to a filtration Ft , t ≥ 0. The
pre-τ σ−field is

Fτ = {F ∈ F : F ∩ [τ ≤ t] ∈ Ft for all t ≥ 0}.

For example, using this definition it is simple to check that

[τ ≤ t] ∈ Fτ ,∀ t ≥ 0, [τ <∞] ∈ Fτ . (7.11)

Remark 7.5. We will always use4 Definition 7.6, and not (7.10). Note, however,
that t ∧ τ ≤ t for all t , so that σ(Xt∧τ : t ≥ 0} is surely contained in Fτ (see
Exercises 2 and 13(i).).

The future relative to τ is the after-τ process Z+τ = {(Z+τ )t : t ≥ 0} obtained by
viewing {Zt : t ≥ 0} from time t = τ onwards, for τ <∞. This is,

(Z+τ )t (ω) = Zτ(ω)+t (ω), t ≥ 0, on [τ <∞]. (7.12)

It is useful to record the following definition.

Definition 7.7. Let S be a metric space with Borel σ -field B(S). The transition
probabilities p(t, x, dy), x ∈ S, t ≥ 0, on B(S), are said to have the Feller
property if x → p(t, x, dy) is (weakly) continuous for each t ≥ 0. Equivalently,
the linear operators S defined for bounded, measurable functions f : S → R by
f (·) → ∫

S f (y)p(t; ·, dy), t ≥ 0, map bounded continuous functions to bounded
continuous functions.

Remark 7.6. The equivalent statement in Definition 7.7 is merely the definition of
weak convergence of p(t; z, dy)⇒ p(t; x, dy), as z → x , for each x ∈ S.

Theorem 7.7 (Strong Markov Property for Right-Continuous Markov Processes).
Let {Xt : t ≥ 0} be a Markov process as in Proposition 7.4, satisfying conditions
(1)–(3) above. Assume also that the transition probabilities are Feller continuous.
Let τ be a stopping time. On [τ <∞], the conditional distribution of X+τ given Fτ

4The proof of the equivalence of (7.10) and that of Definition 7.6 may be found in (Stroock and
Varadhan, 1980, p. 33).
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is the same as the distribution of the {Xt : t ≥ 0} starting at Xτ . In other words, this
conditional distribution is PXτ on [τ <∞].
Proof. First assume that τ has countably many values ordered as 0 ≤ s1 < s2 <

· · · . Consider a finite-dimensional function of the after-τ process of the form

h(Xτ+t ′1 , Xτ+t ′2 , . . . , Xτ+t ′r ), [τ <∞], (7.13)

where h is a bounded continuous real-valued function on Sr and 0 ≤ t ′1 < t ′2 <

· · · < t ′r . It is enough to prove

E

[
h(Xτ+t ′1 , . . . , Xτ+t ′r )1[τ<∞] | Fτ

]
= [Eyh(Xt ′1, . . . , Xt ′r )]y=Xτ 1[τ<∞].

(7.14)
That is, for every A ∈ Fτ we need to show that

E(1Ah(Xτ+t ′1 , . . . , Xτ+t ′r )1[τ<∞]) = E

(

1A

[
Eyh(Xt ′1, . . . , Xt ′r )

]

y=Xτ

1[τ<∞]
)

.

(7.15)
Now

[τ = s j ] = [τ ≤ s j ] ∩ [τ ≤ s j−1]c ∈ Fs j ,

so that A ∩ [τ = s j ] ∈ Fs j . Express the left side of (7.15) as

∞∑

j=1

E
(
1A∩[τ=s j ]h(Xs j+t ′1 , . . . , Xs j+t ′r )

)
. (7.16)

By the Markov property, the j−th summand in (7.16) equals

E(1A1[τ=s j ][Eyh(Xt ′1 , . . . , Xt ′r )]y=Xs j
)

= E(1A1[τ=s j ][Eyh(Xt ′1, . . . , Xt ′r )]y=Xτ ).

Summing this over j , one obtains the desired relation (7.15). This completes the
proof in the case τ has countably many values 0 ≤ s1 < s2 < · · · .

The case of more general τ may be dealt with by approximating it by stopping
times assuming countably many values. Specifically, for each positive integer n
define

τn =
{

j
2n i f j−1

2n < τ ≤ j
2n , j = 0, 1, 2, . . .

∞ i f τ = ∞.
(7.17)
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Since

[τn = j
2n ] = [ j−1

2n < τ ≤ j
2n ] = [τ ≤ j

2n ]\[τ ≤ j−1
2n ] ∈ F j/2n ,

[τn ≤ t] =⋃
j : j/2n≤t [τn = j

2n ] ∈ Ft for all t ≥ 0.

Therefore, τn is a stopping time for each n and τn(ω) ↓ τ(ω) as n ↑ ∞ for each
ω ∈ Ω . Also one may easily check Fτ ⊂ Fτn from definition (see Exercise 2). Let
h be a bounded continuous function on Sr . Define

ϕ(y) ≡ Eyh(Xt ′1 , . . . , Xt ′r ). (7.18)

In view of Feller continuity of p(t; x, dy), ϕ is continuous (Exercise 8). Let A ∈
Fτ (⊂ Fτn ). One has

E(1Ah(Xτn+t ′1 , . . . , Xτn+t ′r )1[τn<∞]) = E(1Aϕ(Xτn )1[τn<∞]). (7.19)

Since h, ϕ are continuous, {Xt : t ≥ 0} has right-continuous sample paths, and
τn ↓ τ as n → ∞, Lebesgue’s dominated convergence theorem may be used on
both sides of (7.19) to get

E(1Ah(Xτ+t ′1 , . . . , Xτ+t ′r )1[τ<∞]) = E(1Aϕ(Xτ )1[τ<∞]). (7.20)

This establishes (7.15), and therefore (7.14). Since finite-dimensional distributions
determine a probability on (Γ, C), the proof is complete. �

In view of the sample path continuity and Markov property of Brownian motion
it now follows that

Corollary 7.8 (Strong Markov Property for Brownian Motion). Brownian motion
on R

k with drift vector μ and diffusion matrix Σ has the strong Markov property.

Using the construction of the Poisson process, as well as the compound Poisson
process, as a right-continuous process with stationary independent increments given
in Chapter 5 one obtains the following (Exercise 9).

Corollary 7.9. The compound Poisson process has the strong Markov property.

The examples below further illustrate the usefulness of Theorem 7.7 in typical
computations. In all these examples B ≡ B0 = {Bt : t ≥ 0} is a one-dimensional
standard Brownian motion starting at zero. For ω ∈ C([0,∞) : R) define, for every
a ∈ R,

τ a(ω) := inf{t ≥ 0 : ω(t) = a},
τa := τ a(B), (7.21)

with the usual convention that the infimum of an empty set of numbers is∞.
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Example 2 (Independent Increments and Distribution of the First Passage Process).
A key result for this application is the reflection principle, to now be obtained as

an application of the strong Markov property Theorem 7.7. Reflection of paths of
Brownian motion starting at x about a horizontal line at level a �= x after first contact
provides an important transformation under which the starting point x and sample
path continuity are clearly preserved. In fact, according to the reflection principle,
the path distribution is invariant under such a transformation!

Theorem 7.10 (The Reflection Principle). Let Bx = {Bx
t : t ≥ 0} be a one-

dimensional standard Brownian motion, with Bx
0 = x a.s. Fix any a �= x . Then

the process W defined by

Wt =
{

Bx
t if t < τa

2a − Bx
t if t ≥ τa

(7.22)

is a standard one-dimensional Brownian motion starting at x .

Proof. For simplicity of notation, we will omit the superscript x of Bx and Bx
t ,

here. First note that by the strong Markov property (Theorem 7.7), the conditional
distribution of the after–τa process B+τa

≡ {Bτa+t : t ≥ 0}, given the pre–τa σ -
field Fτa is the same as the distribution of a + B0, say, Pa . Here Fτa = {A ∈ F :
A∩[τa ≤ t] ∈ Ft ∀ t ≥ 0}, and Ft := σ {Bs, 0 ≤ s ≤ t} (t ≥ 0). In particular, since
the latter distribution is constant on Ω , B+τa

is independent of Fτa . Now B+τa
− a and

a − B+τa
= {a − Bτa+t : t ≥ 0} have the same distribution, namely, P0. Therefore,

{a + a − Bτa+t : t ≥ 0} ≡ W+
τa

is independent of Fτa and has distribution Pa , the
same holds for B+τa

. Since (a) W is the same function of Y ≡ {Bt∧τa : t ≥ 0} and
W+
τa

as B is of Y and B+τa
, and (b) (Y,W+

τa
) and (Y, B+τa

) have the same distribution,
it follows that W and B have the same distribution Px (Also see Exercise 13). �
For the following Corollaries, and elsewhere in this chapter, {Bt : t ≥ 0} denotes a
standard Brownian motion, started at 0.

Corollary 7.11. The joint distribution of the running maximum Mt := max{Bs :
0 ≤ s ≤ t} and Bt is given by

P(Mt ≥ a, Bt ≤ y) = P(Bt ≥ 2a − y)

= 1−
∫ (2a−y)/

√
t

−∞
(2π)−

1
2 e−x2/2dx, (y ≤ a). (7.23)

Proof. Note that it follows from Theorem 7.10, and the fact that both B+τa
and W+

τa
are independent of τa (by the strong Markov property), that for y ≤ a,

P(Mt ≥ a, Bt ≤ y) ≡ P(τa ≤ t, 2a −Wt ≤ y) = P(τa ≤ t, 2a − Bt ≤ y)

= P(τa ≤ t, Bt ≥ 2a − y) = P(Bt ≥ 2a − y),
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since 2a − y ≥ a, and [Bt ≥ 2a − y] ⊂ [τa ≤ t]. �
Corollary 7.12.

(i) The distribution of Mt is given by

P(Mt ≥ a) = 2P(Bt ≥ a) =
√

2

π t

∫ ∞

a
e−

x2
2t dx (a > 0). (7.24)

(ii) The joint probability density function of (Mt , Bt ) is

f (a, y) =
⎧
⎨

⎩

(
2
π

)1/2
t−3/2(2a − y)e−(2a−y)2/2t for a > 0, y < a

0 otherwise.
(7.25)

Proof.

(i) Apply 7.23 with y = a to get P(Mt ≥ a) = P(Mt ≥ a, Bt ≤ a) + P(Mt ≥
a, Bt > a) = P(Bt ≥ a)+ P(Bt > a).

(ii) Differentiate the integral in (7.23) with respect to y and a in succession (and
change sign).

�
Corollary 7.13. For fixed t > 0, Rt := Mt − Bt has the same distribution as |Bt |.
Proof. Since Bt has pdf ϕt (x) = 1√

2π t
e− x2

2t , the distribution of |Bt | has pdf

ϕt (x) + ϕt (−x) = 2ϕt (x), x ≥ 0. Computing the joint pdf of (Mt − Bt , Mt ) as
a linear transformation of (Mt , Bt ) with determinant one, one obtains (Exercise 11)
( 2
π
)1/2t−3/2(x + y)e−(x+y)2/2t = −2 d

dyϕt (x + y). Integrating with respect to y
therefore yields the marginal pdf of Mt − Bt as 2ϕt (x), x ≥ 0. �

Remark 7.7 (Lévy-Skorokhod Formula). In Chapter 19 of the present text it is
shown that |Bt |, t ≥ 0, is a Markov process starting at zero with transition
probabilities p(t; x, y) = ϕt (y + x) + ϕt (y − x), x, y ≥ 0, where ϕt is the mean
zero, variance t Gaussian density. With a bit more work one shows (Theorem 19.3)
that Mt−Bt , t ≥ 0 is also a Markov process starting at zero, with the same transition
probability densities as the reflecting Brownian motion |Bt |, t ≥ 0. Since B and the
reflection |B| have the same zeroes, it will follow that the distribution of the time
of the last zero in [0, 1] of Brownian motion coincides with the distribution of the
location of the maximum value of Brownian motion on [0, 1]. In Chapter 18 this
arcsine distribution is computed.

In reference to the following corollary, recall that a real-valued random variable
Y with distribution Q on R is said to have a stable distribution with exponent α and

centering constants cn, n ≥ 1, if for every n = 1, 2, . . . Q∗n((−∞, n
1
α z + cn]) =

Q((−∞, z]) ∀ z ∈ R or, alternatively, if Y1,Y2, . . . are i.i.d. with distribution Q,



7 Strong Markov Processes 83

then (Y1 + · · · + Yn − cn)/n
1
α also has the same distribution Q; here Q∗n denotes

the n−fold convolution of the probability Q. Familiar examples are the standard
normal distribution (α = 2, cn = 0, n ≥ 1) and the Cauchy distribution. (α =
1, cn = 0, n ≥ 1).

Corollary 7.14 (First Passage Time Process for Standard Brownian Motion).
(i) {τa : a ≥ 0} is an increasing process with stationary independent increments, and
(ii) the first passage time τa has the stable law distribution of exponent 1

2 , centering
constants cn = 0, concentrated on [0,∞) with probability density function

ga(t) = a

(
1

2π

)1/2

t−3/2e−a2/2t , t > 0. (7.26)

Proof. Let Ft := σ(Bs : s ≤ t), t ≥ 0. (i) Let 0 < a < b. Since τb = τa + τ b(B+τa
)

(See (7.21)) τb − τa is a function of B+τa
which is independent of Fτa . Note that the

distribution of τ b(Bτa ) is that of the first time Brownian motion B, starting at zero,
reaches b − a, i.e., of τ b−a(B). Also, for all a′ < a, one has τa′ ≤ τa and therefore
from the definition of stopping times, one may check Fτa′ ⊂ Fτa (Exercise 2). It
follows that τb − τa is independent of {τa′ : 0 ≤ a′ ≤ a}. In particular, for any
given 0 ≤ a1 < a2 < · · · < ak , the random variables τa1 , τa2 − τa1 , τa3 − τa2 , . . . ,

τak − τak−1 are independent. (ii) Differentiate the right side of (7.24) with respect
to t in order to get (7.26), using the identity [τa ≤ t] = [Mt ≥ a]. The stable law
property follows from the observations: (a) In view of (i) the pdf τna equals g∗n

a , and
(b) the pdf of τa is the same as that of τna/n2. �

As an application one may obtain an otherwise quite challenging integral
computation (see Exercise 19) of the Laplace transform of τa , namely, Ee−λτa , λ >

0.

Proposition 7.15. Ee−λτa = e−|a|
√

kλ for all λ > 0 for a constant k > 0.

Proof. Without loss of generality, take a > 0. In view of Corollary 7.14 it follows
that τa+b = τa+b − τb + τb = τ̃a + τb with τ̃a and τb independent first passage
times to a and b, respectively. Thus, the Laplace transform Ee−λτa is log-linear in
a. One may obtain

√
λ up to a positive constant k from the Brownian motion scaling

τa = c−2τca, c > 0. That is, τa = inf{t ≥ 0 : Bt = a} = inf{t ≥ 0 : c−1 Bc2t =
a} = inf{t ≥ 0 : Bc2t = ca} = 1

c2 inf{c2t ≥ 0 : Bc2t = ca} = c−2τca . Thus

Ee−λτa = e−|a|
√

kλ, for a constant k > 0 to be determined. �

Remark 7.8. The explicit evaluation of the integral
∫∞

0
|a|√
2π

t− 3
2 e−λt e− a2

2t dt is
a non-trivial exercise in calculus. A very simple approach can be achieved via
martingale theory (Chapter 11). However, even the determination of k = 2 presents
a calculus challenge (see Exercise 19). The Laplace transform will be used in
the proof of Proposition 16.3 in Chapter 16; however, it does not require the
determination of k, only the general form e−|a|

√
kλ, λ > 0.
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One may also explicitly obtain the distribution of the escape time τ−b,a = τ−b ∧
τa, a, b > 0 using the strong Markov property as follows.

Lemma 1 (First Passage Decomposition). For arbitrary positive a, b and Borel set
C ⊂ R, one has

P(τ−b,a ≤ t, Bt ∈ C) =
∫

[0,t]×R
P
(
B y

t−u ∈ C
)
Γ (dudy),

where Γ is the (joint) distribution of (τ−b,a, Bτ−b,a ).

Proposition 7.16. The distribution function G(t) of τ−b,a is given by

G(t) = Ha(t)+ Hb(t)− {H2a+b(t)+ Ha+2b(t)} + {H3a+2b(t)+ H2a+3b(t)}
− {H4a+3b(t)+ H3a+4b(t)} + {H5a+4b(t)+ H4a+5b(t)} − + . . . ,

where Hx (t) = 2(1−Φ(x/√t), Φ(·) being the distribution function of the standard
normal distribution N (0, 1).

Proof. Since Bτ−b,a = a or −b, with probability one, if one takes C = [a,∞) ∪
(−∞,−b] in the first passage decomposition (Lemma 1), then

P(Bt ≥ a or ≤ −b)

≡ P(τ−b,a ≤ t, Bt ≥ a or ≤ −b)

=
∫

[0,t]×{a,−b}
P
(
B y

t−u ≥ a or ≤ −b
)
Γ (dudy). (7.27)

But, at y = a, the last integrand equals

P(Ba
t−u ≥ a or ≤ −b)

= P(Ba
t−u ≥ a)+ P(Ba

t−u ≤ −b)

= 1

2
+ P(Bt−u ≤ −a − b)

= 1

2
+ P(Bt−u ≥ a + b).

At y = −b, the integrand has the same value, since

P
(

B−b
t−u ≥ a or ≤ −b

)

= P
(

B−b
t−u ≤ −b

)
+ P

(
B−b

t−u ≥ a
)

= 1

2
+ P (Bt−u ≥ a + b) .
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Hence one has

P (Bt ≥ a)+ P (Bt ≥ b) = P (Bt ≥ a or ≤ −b)

=
∫

[0,t]

(
1

2
+ P(Bt−u ≥ a + b)

)

G(du), (7.28)

where G(du) = ∫
{a,−b}Λ(dudy) is the distribution of τa,−b. Next, by Corol-

lary 7.12, recalling τx := inf{t ≥ 0 : Bt = x}, one has

P(Bt ≥ x) = 1

2
P(τx ≤ t), (x > 0). (7.29)

Using this on both sides of (7.28), and denoting by Hy(du) the distribution of τy

(and by Hy(t) its distribution function depending on the mathematical context), one
gets

1

2
Ha(t)+ 1

2
Hb(t) = 1

2
G(t)+ 1

2
G ∗ Ha+b(t),

or,

G(t) = Ha(t)+ Hb(t)− G ∗ Ha+b(t). (7.30)

Iterating repeatedly, and remembering that Hc ∗ Hd = Hc+d (The process {τy : y ≥
0} has independent homogeneous increments), we arrive at the assertion. �
Let mt := min{Bs : 0 ≤ s ≤ t} and Mt := max{Bs : 0 ≤ s ≤ t}. Then the
distribution of (mt , Mt ) readily follows.

Corollary 7.17 (Joint Distribution of Maximum and Minimum of Brownian Motion).

P (Mt < a and mt > −b)

= 1− Ha(t)− Hb(t)+ {H2a+b(t)+ Ha+2b(t)} − {H3a+2b(t)+ H2a+3b(t)}
+ {H4a+3b(t)+ H3a+4b(t)} − {H5a+4b(t)+ H4a+5b(t)} + − . . . , (7.31)

where Hx (t) = 2(1−Φ(x/
√

t).

Proof. One has

P (Mt < a and mt > −b) = 1− P
(
τ−b,a ≤ t

) = 1− G(t), (a > 0, b > 0).

�
Just as with the random walk Example 1, the following illustrates a use of the

strong Markov property in a similar calculation for Brownian motion.
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Example 3 (Boundary Value Distribution of Brownian Motion). Let {Zt := x +
σ Bt : t ≥ 0} be a one-dimensional Brownian motion with zero drift and diffusion
coefficient σ 2 > 0 started at x ∈ [c, d] for c < d. The stopping time τc∧ τd denotes
the first time to reach the “boundary” states {c, d}. Define

ψ(x) := Px (Zτc∧τd = c) ≡ Px ({Zt : t ≥ 0} reaches c before d), (c ≤ x ≤ d).
(7.32)

Fix x ∈ (c, d) and h > 0 such that [x − h, x + h] ⊂ (c, d). Unlike the discrete
parameter case there is no “first step” to consider. It will be convenient to consider
τ = τx−h ∧ τx+h , i.e., τ is the first time {Zt : t ≥ 0} reaches x − h or x + h. Then
Px (τ <∞) = 1, by the simple computation

Px (τ > t) ≤ Px (x − h < Zt < x + h)

= 1

(2πσ 2t)1/2

∫ x+h

x−h
exp

{

− (y − x)2

2σ 2t

}

dy

= 1

(2π)1/2

∫ h/σ
√

t

−h/σ
√

t
exp

{

− z2

2

}

dz → 0 as t →∞. (7.33)

Now,

ψ(x) = Px ({Zt : t ≥ 0} reaches c before d)

= Px ({(Z+τ )t : t ≥ 0} reaches c before d)

= Ex (Px ({(Z+τ )t : t ≥ 0} reaches c before d | {Zt∧τ : t ≥ 0})). (7.34)

The strong Markov property now gives that

ψ(x) = Ex (ψ(Zτ )) (7.35)

so that by symmetry of the normal distribution,

ψ(x) = ψ(x − h)Px (Zτ = x − h)+ ψ(x + h)Px (Zτ = x + h)

= ψ(x − h)
1

2
+ ψ(x + h)

1

2
. (7.36)

Rewriting (7.36) as ψ(x+h)−ψ(x)
2 − ψ(x)−ψ(x−h)

2 = 0, then dividing by h, and letting
h ↓ 0, one gets ψ ′′(x) = 0, i.e., ψ is linear in x . By (7.32), ψ(x) satisfies the
boundary conditions ψ(c) = 1, ψ(d) = 0. Therefore,

ψ(x) = d − x

d − c
. (7.37)
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An alternative derivation using martingales is given in Chapter 13, Example 2. Now,
by (7.33) and (7.37),

Px ({Zt : t ≥ 0} reaches d before c) = 1− ψ(x) = x − c

d − c
(7.38)

for c ≤ x ≤ d. It follows, on letting d ↑ ∞ in (7.37) and c ↓ −∞ in (7.38) that

Px (τy <∞) = 1 for all x, y. (7.39)

Consider a Brownian motion {X x
t ≡ x + σ Bt : t ≥ 0} with drift μ = 0 and

diffusion coefficient σ 2 > 0, starting at x . One has

P(τ x
c < τ x

d ) = P({X x
t : t ≥ 0} reaches c before d) (c < x < d)

= P({B
x
σ
t : t ≥ 0} reaches

c

σ
before

d

σ
), (c < x < d), (7.40)

where

τ x
y := inf{t ≥ 0 : X x

t = y}. (7.41)

Thus one has

Proposition 7.18 (Boundary Distribution Under Zero Drift). Let c < x < d. Then

P(τ x
c < τ x

d ) =
d − x

d − c
(c < x < d, μ = 0),

P(τ x
d < τ x

c ) =
x − c

d − c
(c < x < d, μ = 0).

Letting d → +∞ in the first result and c → −∞ in the second, one obtains the
following.

Corollary 7.19 (Pointwise Recurrence Under Zero Drift).

P(τ x
c <∞) = P({X x

t : t ≥ 0} ever reaches c) = 1 (c < x, μ = 0),

P(τ x
d <∞) = P({X x

t : t ≥ 0} ever reaches d) = 1 (x < d, μ = 0).

Taken with the strong Markov property these relations imply that a (one-
dimensional) Brownian B motion with zero drift is (pointwise) recurrent in the sense
that Btn = x, n = 1, 2, . . . , for an unbounded, increasing (random) sequence tn , just
as is a simple symmetric random walk.

It is much simpler to show that Brownian motion X with drift is transient in
the sense that, with probability one, |Xt | → ∞ as t → ∞, for arbitrarily given
starting state x . In fact, one may use the invariance under time-inversion for standard
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Brownian motion starting at 0 to obtain the distribution of the time of the last visit
to 0 by a Brownian motion with (nonzero) drift; see Proposition 16.6 of Chapter 16.

Proposition 7.20 (Transience of One-Dimensional Brownian Motion with Drift).
Let x ∈ R. With probability one,

lim
t→∞ x + μt + Bt =

{
+∞ if μ > 0

−∞ if μ < 0.

Proof. This can be deduced by an appeal to a continuous time version of the strong
law of large numbers, just as in (2.9), (2.10) of Chapter 2. The details are left to the
reader (Exercise 16). �
A proof of the arcsine law is given in Chapter 18, Corollary 18.2, as well.

In anticipation of Corollary 17.6 in Chapter 17, the calculation of the boundary
value probabilities when the drift is a nonzero quantity μ can be made as a limit
of the corresponding probabilities for asymmetric random walk. In particular, the
following will be proven in Chapter 17.

Proposition 7.21. Consider the one-dimensional Brownian motion with nonzero
drift μ.

P(τ x
c < τ x

d ) =
1− exp{2(d − x)μ/σ 2}
1− exp{2(d − c)μ/σ 2} (c < x < d, μ �= 0),

P(τ x
d < τ x

c ) =
1− exp{−2(x − c)μ/σ 2}
1− exp{−2(d − c)μ/σ 2} (c < x < d, μ �= 0).

P(τ x
c <∞) = exp

{

−2(x − c)μ

σ 2

}

(c < x, μ > 0); P(τ x
c <∞) = 1 (c < x, μ < 0).

P(τ x
d <∞) = 1 (x < d, μ > 0); P(τ x

d <∞) = exp{2(d − x)μ/σ 2} (x < d, μ < 0).

Remark 7.9. These distributions will also be computed by martingale methods in
Chapter 13.

From Proposition 7.21 one also has (Exercise 15),

Corollary 7.22. For the one-dimensional Brownian motion X0 with nonzero drift
μ and diffusion coefficient σ 2 > 0, in the case μ > 0, the extremal random
variable −m = − inft≥0 X0

t ≥ 0, t ≥ 0, is exponentially distributed on [0,∞)

with parameter 2μ
σ 2 , and in the case μ < 0, M = supt≥0 X0

t ≥ 0 is exponentially

distributed on [0,∞) with parameter 2|μ|
σ 2 .

Of course these results also imply that a Brownian motion with a nonzero drift is
transient.
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As the following proof shows, the law of the iterated logarithm5 (LIL) is yet
another remarkable and powerful encapsulation of the basic structural properties of
Brownian motion.

Theorem 7.23 (Law of the Iterated Logarithm (LIL) for Brownian Motion). Each
of the following holds with probability one:

limt→∞
Bt√

2t log log t
= 1, limt→∞

Bt√
2t log log t

= −1.

Proof. Let ϕ(t) := √2t log log t, t > 0. Let us first show that for any 0 < δ < 1,
one has with probability one that

limt→∞
Bt

ϕ(t)
≤ 1+ δ. (7.42)

For arbitrary α > 1, partition the time interval [0,∞) into subintervals of
exponentially growing lengths tn+1 − tn , where tn = αn , and consider the event

En :=
[

max
tn≤t≤tn+1

Bt

(1+ δ)ϕ(t)
> 1

]

.

Since ϕ(t) is a non-decreasing function, one has, using Corollary 7.12, a scaling
property, and Feller’s tail probability estimates6 for the normal distribution, that

P(En) ≤ P

(

max
0≤t≤tn+1

Bt > (1+ δ)ϕ(tn)

)

= 2P

(

B1 >
(1+ δ)ϕ(tn)√

tn+1

)

≤
√

2

π

√
tn+1

(1+ δ)ϕ(tn)
e
− (1+δ)2ϕ2(tn )

2tn+1 ≤ c
1

n(1+δ)2/α
(7.43)

for a constant c > 0 and all n2 ≥ (logα + 1)−1. For a given δ > 0 one may select
1 < α < (1+ δ)2 to obtain P(En i.o.) = 0 from the Borel–Cantelli lemma (Part I).
Thus we have (7.42). Since δ > 0 is arbitrary we have with probability one that

limt→∞
Bt

ϕ(t)
≤ 1. (7.44)

Next let us show that with probability one,

limt→∞
Bt

ϕ(t)
≥ 1. (7.45)

5The LIL for Brownian motion was originally obtained in Khintchine (1933).
6See BCPT p.82.
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For this consider the independent increments Btn+1 − Btn , n ≥ 1. For θ = tn+1−tn
tn+1

=
α−1
α

< 1, again using Feller’s tail probability estimate and Brownian scale change,

P
(
Btn+1 − Btn > θϕ(tn+1)

) = P

(

B1 >

√
θ

tn+1
ϕ(tn+1)

)

≥ c′√
2θ log log tn+1

e−θ log log tn+1

≥ c√
log n

n−θ (7.46)

for suitable constants c, c′ depending on α and for all n2 > (logα+1)−1. It follows
from the Borel–Cantelli Lemma (Part II) that with probability one,

Btn+1 − Btn > θϕ(tn+1) i.o. (7.47)

Also, by (7.44) and replacing {Bt : t ≥ 0} by the standard Brownian motion {−Bt :
t ≥ 0},

limt→∞
Bt

ϕ(t)
≥ −1, a.s. (7.48)

Since tn+1 = αtn > tn , we have

Btn+1√
2tn+1 log log tn+1

= Btn+1 − Btn√
2tn+1 log log tn+1

+ 1√
α

Btn√
2tn(log log tn + log logα)

.

(7.49)
Now, using (7.47) and (7.48), it follows that with probability one,

limn→∞
Btn+1

ϕ(tn+1)
≥ θ − 1√

α
= α − 1

α
− 1√

α
. (7.50)

Since α > 1 may be selected arbitrarily large, one has with probability one that

limt→∞
Bt

ϕ(t)
≥ limn→∞

Btn+1

ϕ(tn+1)
≥ 1. (7.51)

This completes the computation of the limit superior. To get the limit inferior simply
replace {Bt : t ≥ 0} by {−Bt : t ≥ 0}. �
Remark 7.10. An important functional generalization of Khinchine’s LIL (Theo-
rem 7.23) was obtained later by Strassen (1964), stated without proof as follows.

Theorem 7.24. Let {Xn : n ≥ 1} be an i.i.d. sequence with mean zero and variance
one. Then , with probability one, the stochastic process on [0, 1] defined by
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Sn(t) = Si√
2n log log n

, t = i

n
(i = 1, . . . , n), Sn(0) = 0,

and linearly interpolated for t ∈ [i/n, (i + 1)/n], (i = 0, 1, . . . , n), has its
set of limit points (in the uniform topology for C[0, 1]) given by the set of all
absolutely continuous functions f on [0, 1] satisfying f (0) = 0, and such that∫
[0,1] | f ′(t)|2dt ≤ 1.

The ordinary LIL is obtained by taking f (t) = t , and f (t) = −t , respectively, or
any absolutely continuous function f satisfying f (0) = 0 and f (1) = ±1. Since
f (1) = ∫

[0,1] | f ′(t)|2dt ≤ 1, it follows that the latter functions lead to the lim sup
and lim inf, respectively, of Sn(1), as n →∞.

As another illustrative application of the strong Markov property one may derive
a Cantor-like structure of the random set of zeroes of Brownian motion as follows.

Proposition 7.25. With probability one, the set Z := {t ≥ 0 : Bt = 0} of zeros
of the sample path of a one-dimensional standard Brownian motion, starting at 0, is
uncountable, closed, and unbounded. Moreover, Z a.s. has Lebesgue measure zero.

Proof. Let A0 = {ω ∈ Ω : Bt (ω) = 0 for infinitely many t in every interval
[0, ε], ε > 0}. The law of iterated logarithm (Theorem 7.23) may be applied to the
Brownian motion W0 = 0,Wt = √t B 1

t
, t > 0, as t ↓ 0 to obtain P(A0) = 1. Since

t → Bt (ω) is continuous, Z(ω) is closed. Applying the LIL as t ↑ ∞, it follows
Z(ω) is unbounded a.s.

We will now show that, for 0 < c < d, the probability is zero of the event
A(c, d), say, that B has a single zero in [c, d]. For this consider the stopping time
τ := inf{t ≥ c : Bt = 0}. By the strong Markov property, B+τ is a standard
Brownian motion, starting at zero. In particular, τ is a point of accumulation of
zeros from the right (a.s.). Also, P(Bd = 0) = 0. This implies P(A(c, d)) = 0.
Considering all pairs of rationals c, d with c < d, it follows that Z has no isolated
point outside a set of probability zero. Alternatively, let Z1(ω) denote the set of
zeros of a sample path ω of the path t → Bt (ω) on 0 ≤ t ≤ 1. suppose there is
a subset F ∈ F such that P(F) = δ > 0 and for each ω ∈ F there exists an
isolated zero z(ω) of Z1(ω). Then there exists � > 0 such that the probability of
the length of an open interval with center z(ω), free of other zeros, being larger
than � has a positive probability. This would imply if (0, 1) is divided into [3/�]
subintervals of equal length, then, with positive probability, one of these intervals
contains isolated zeros of Z1. Finally, for each T > 0 let HT = {(t, ω) : 0 ≤ t ≤ T ,
Bt (ω) = 0} ⊂ [0, T ]×Ω . By Fubini’s theorem, denoting the Lebesgue measure on
[0,∞) by m, one has

(m × P)(HT ) =
∫ T

0

{∫

Ω

1{ω:Bt (ω)=0}P(dω)
}

dt

=
∫ T

0
P(Bt = 0)dt = 0,
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so that, m({t ∈ [0, T ] : Bt (ω) = 0}) = 0 for P-almost all ω. �
The following distributions can be obtained as a rather direct consequence of the

Markov property for Brownian notion.

Proposition 7.26 (Inverse Trigonometric Laws for First and Last Zeroes of Brown-
ian Motion). Let S := sup{t ≤ 1 : Bt = 0}, and T :=:= inf{t ≥ 1 : Bt = 0}.
Then, S has the arcsine pdf 1

π
√

s(1−s)
, 0 < s < 1, and T has pdf 1

π t
√

t−1
, t > 1.

Proof. Conditionally given Bu, u ≤ s ≤ 1, the event [S ≤ s] is equivalent to there
being no zero in the time from s to 1 for the process restarting from Bs . So,

P(S ≤ s)

= EP(S ≤ s|Bu, u ≤ s)

= EPBs (τ0 > 1− s)

=
∫ ∞

−∞
Px (τ0 > 1− s)P(Bs ∈ dx)

=
∫ ∞

−∞
Px (τ0 > 1− s)gs(x)dx

= 1

π

∫ s

0
(1− t)−

1
2 t−

1
2 dt,

where gs(x) is the Gaussian density of Bs having mean zero and variance s, and
τ0 denotes the first passage time to 0 for standard Brownian motion started at x
under Px . By symmetry, the distribution of the hitting time at 0 starting from x
coincides with the distribution of the hitting time of x starting from 0, i.e., with

pdf t → |x |√
2π

t− 3
2 e− x2

2t , t > 0. The details of the calculus are left as Exercise 12.
Similarly, for the distribution of T one has

P(T > t)

= EP(T > t |Bu, u ≤ 1)

= EPB1(τ0 > t − 1)

=
∫ ∞

−∞
Px (τ0 > t − 1)g1(x)dx

=
∫ ∞

t

1

πs
√

s − 1
ds.

�
Remark 7.11. In anticipation of the previously cited Lévy-Skorokhod formula for
the present context, one may show that S∗ = argmax Bt , 0 ≤ t ≤ 1 is well-defined
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unique solution to RS∗ = MS∗ − BS∗ = 0. So, using the Lévy-Skorokhod formula,
the zeroes of Rt are distributed as the zeroes of |Bt |which, in turn are also the zeroes
of Bt . Thus S∗ is distributed as S, the last zero of B before t = 1, and therefore has
the arcsine distribution.

The following general consequence of the Markov property can also be useful in
the analysis of the (infinitesimal) fine scale structure of Brownian motion and may
be viewed as a corollary to Proposition 7.6. As a consequence, for example, one
sees that for any given function ϕ(t), t > 0, the event

Dϕ := [Bt < ϕ(t) for all sufficiently small t] (7.52)

will certainly occur or is certain not to occur, i.e., for almost every sample path
ω ∈ C[0,∞) there is an t(ω) such that Bt < ϕ(t) for all t > t . Functions ϕ
for which P(Dϕ) = 1 are said to belong to the upper class at the origin;7 see
Exercise 20. Note that by a time-inversion this translates to behavior of Brownian
motion at infinity as well; see Exercise 20 for the corresponding notion of upper
class at infinity.

Proposition 7.27 (Blumenthal’s Zero–One Law). With the notation of Proposi-
tion 7.6,

P(A) = 0 or 1 ∀ A ∈ F0+. (7.53)

Proof. It follows from (the proof of) Proposition 7.6 that Fs+ is independent of
σ {Bt+s − Bs : t ≥ 0} ∀ s ≥ 0. Set s = 0 to conclude that F0+ is independent of
σ(Bt : t ≥ 0) ⊃ F0+. Thus F0+ is independent of F0+ so that ∀ A ∈ F0+ one has
P(A) ≡ P(A ∩ A) = P(A) · P(A). �

Exercises

1. Show that each τ (r)B is a stopping time.
2. (i) If τ1, τ2 are stopping times show that τ1∨τ2 and τ1∧τ2 are stopping times.

(ii) If τ1 ≤ τ2 are stopping times show that Fτ1 ⊂ Fτ2 .

3. In Example 1 prove that Px (τ
(1)
x <∞) = 1. [Hint: Condition on σ(S0, S1).]

4. Give a proof of (2.5), followed by a proof of Proposition 2.1, using the strong
Markov property with stopping time τ = τx−1 ∧ τx+1.

5. Consider a random walk {Sx
n : n ≥ 0} on the integers starting at an integer

x , and let Nx = ∑∞
n=0 1[Sx

n = x] denote the number of returns to x counting
Sx

0 = x .

7Some authors will refer to t− 1
2 ϕ(t) as being upper class in such instances.
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(i) Show that P(Nx = k) = ρk−1(1 − ρ), k = 1, 2, . . . , where ρ is the
probability of eventual return to x . [Hint: Use the strong Markov property to
show Nx counts the number of i.i.d. return cycles to x .]

(ii) Show ρ = 1 if and only if P(Nx = ∞) = 1.
(iii) Show that P(Sx

n = x i.o.) = 1 if and only if
∑∞

n=0 P(Sx
n = x) ≡ ENx =

∞.
(iv) Show that P(Sx

n = x i.o.) = 0 if and only if
∑∞

n=0 P(Sx
n = x) <∞.

6. Prove the following for simple asymmetric random walk:

(i) If p < 1
2 , Px (τ

(r)
y <∞) = (2p)r−1(

p
q )

y−x if y > x , and Px (τ
(r)
y <∞) =

(2p)r−1 if y < x , (r ≥ 1).
(ii) If p > 1

2 , Px (τ
(r)
y < ∞) = (2q)r−1(

q
p )

x−y if y < x , and Px (τ
(r)
y <

∞) = (2q)r−1 if y > x , (r ≥ 1). [Hint: If x �= y, Px (τ
(1)
y < ∞) is given

by Corollary 2.2. For r > 1, use induction based on Px (τ
(r)
y < ∞) =

Px (τ
(r−1)
y < ∞, (S+

τ
(r−1)
y

)n = y for some n ≥ 1), and the strong Markov

property with stopping time τ (r−1)
y .]

7. Complete the indicated details required in the proof of Corollary 7.5.
8. Verify the continuity of the function ϕ defined in (7.18) as the result of the

Feller continuity condition.
9. Show that the strong Markov property holds for the compound Poisson process

by verifying the conditions for Theorem 7.7. [Hint: For the Feller property note
that all bounded functions on Z+ are continuous, bounded functions for the
discrete topology.]

10. Suppose that X,Y, Z are three random variables with values in arbitrary
measurable spaces (Si ,Si ), i = 1, 2, 3, respectively. Assume that regular8

conditional distributions exist. Show that σ(Z) is conditionally independent of
σ(X) given σ(Y ) if and only if the conditional distribution of Z given σ(Y ) a.s.
coincides with the conditional distribution of Z given σ(X,Y ).

11. For standard Brownian motion B starting at zero, fill in the details to show
that Mt − Bt is distributed as |Bt |.[Hint: Consider the linear transformation of
(Mt , Bt ) to (Mt , Mt − Bt ) and use Corollary 7.11.]

12. Complete the calculus details for the proof of Proposition 7.26.
13. In the notation of Theorem 7.10,

(i) Prove that Y := {Bt∧τa : t ≥ 0} is Gτa –measurable,
(ii) Express B ≡ {Bt : t ≥ 0} explicitly as a measurable function of Y and

B+τa
, and express W as the same function of Y and W+

τa
. [Hint: (ii) Let

Cx = { f ∈ C[0,∞), f (0) = x}. Fix a > 0. On C0 × Ca define ϕ

by ϕ( f, g)(t) = f (t) for t ≤ τ a( f ) and ϕ( f, g)(t) = g(t − τ a( f )) for
t > τa( f ). Then B = ϕ(Y, B+τa

), and W = ϕ(Y,W+
τa
). Measurability of ϕ

8See BCPT p. 41 for explicit conditions.



Exercises 95

follows from lower semicontinuity of Eτa( f ) as a function from C[0,∞)

into [0,∞] and the relation {ϕ( f, g)(t) ≤ x} = {τ a( f ) > t , f (t) ≤
x} ∪ {τ a( f ) ≤ t , g(t − τ a( f )) ≤ x}.]

14. Derive the joint distribution of (mt , Bt ), where mt := min{Bs : 0 ≤ s ≤
t}, and {Bt : t ≥ 0} is standard Brownian motion with B0 = 0. [Hint:
Use Corollary 7.11 and the fact −B is a one-dimensional standard Brownian
motion.]

15. Show that the distribution of mint≥0 X0
t is exponential if {X0

t : t ≥ 0}
is Brownian motion starting at 0 with drift μ > 0. Likewise, calculate the
distribution of maxt≥0 X0

t when μ < 0.
16. (i) Use the SLLN to show that the Brownian motion with nonzero drift is

transient.
(ii) Extend (i) to the k-dimensional Brownian motion with drift.

17. Let Xt = X0 + vt , t ≥ 0, where v is a nonrandom constant-rate parameter and
X0 is a random variable.

(i) Calculate the conditional distribution of Xt , given Xs = x , for s < t .
(ii) Show that all states are transient if v �= 0 in the sense that |Xt | → ∞ a.s.

as t →∞.
(iii) Calculate the distribution of Xt if the initial state is normally distributed

with mean μ and variance σ 2.
(iv) Repeat the above when v is a random variable, independent of the initial

state X0.

18. Let {Xt : t ≥ 0} be a Brownian motion starting at 0 with diffusion coefficient
σ 2 > 0 and zero drift. Define {Yt : t ≥ 0} by Yt = t X1/t for t > 0 and Y0 = 0.
Recall that {Yt : t ≥ 0} is distributed as Brownian motion starting at 0 by the
time-inversion property.

(i) Show that {Xt : t ≥ 0} has infinitely many zeroes in every neighborhood
of t = 0 with probability 1.[Hint: Use the law of the iterated logarithm to
show a.s. lim supt→∞ Xt = +∞ and lim inft→∞ Xt = −∞.]

(ii) Show that the probability that t → Xt has a right-hand derivative at t = 0
is zero.

19. Use calculus, with the aid of integration software, to determine k = 2 in the
formula Ee−λτa = e−|a|

√
kλ, λ > 0, for the Laplace transform of the first pas-

sage time in Proposition 7.15. [Hint: Consider Eτ1e−τ1 = − d
dλEe−λτ1 |λ=1 =√

k
2 e−

√
k . On the other hand, the substitution s = t

1
2 yields

Eτ1e−τ1 = 1√
2π

∫ ∞

0
e−t t−

1
2 e−

1
2t dt

= 2√
2π

∫ ∞

0
e
− 1

s2 e−
s2
2 ds
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= 2√
2π

√
π

4
(e−

√
2(1− erf(

1√
2s
− s))+ e−

√
2(−1+ erf(

1√
2s
+ s)))|∞0

= 2√
2π

e−
√

2

2

√
π.

where this last line used Matlab integration, and erf(x) = 1√
π

∫ x
−x e−t2

dt is the
error function.]

20. (Kolmogorov’s Test for Upper Class Functions) Suppose ϕ is a non-negative

increasing continuous function such that t− 1
2 ϕ(t) is a decreasing function.

(i) Show9 that for ϕ to belong to the upper class at the origin (7.52), it is
sufficient that

∫ 1

0
t−

3
2 ϕ(t) exp(−ϕ

2(t)

2t
)dt <∞.

[Hint: The similarity of the integrand with a first passage time pdf is
not accidental. The general idea for the proof is that convergence of
∫ 1

0 t− 3
2 ϕ(t) exp(−ϕ2(t)

2t )dt < ∞ yields a (nonrandom) sequence τ1 >

τ2 > . . . , decreasing to zero, such that
∑∞

k=1 P(maxτk≤t≤τk−1 Bt >

ϕ(τk−1)) < ∞. Thus, by the Borel–Cantelli lemma Part I, there is a
(random) K such that Bt < ϕ(t) for all t < τK . Complete the following
steps to provide the details: (a) For a decreasing sequence τk, k ≥ 1, to be

determined, show that
maxτk≤t≤τk−1 Bt

ϕ(t) ≤ maxτk≤t≤τk−1 Bt

ϕ(τk )
≤ max0≤t≤τk−1 Bt

ϕ(τk )
.

(b) Apply the (reflection principle) bound (7.24) on the running max-
imum, together with scaling and Feller’s tail probability estimate for

the normal distribution to show P(
maxτk≤t≤τk−1 Bt

ϕ(t) > 1) ≤ P(Mτk−1 >

ϕ(τk)) ≤ 2 1√
2π

√
τk−1

ϕ(τk )
e
− ϕ2(τk )

2τk−1 ≤
√

2
π

√
τk−1
τk

τ
− 1

2
k−1ϕ(τk−1)

e−
τk

τk−1
(τ
− 1

2
k−1ϕ(τk−1))

2

2 . (c)

Define τk+1 = τkϕ
2(τk )

τk+ϕ2(τk )
, k ≥ 1. Show that τk decreases to 0 as

k → ∞, τk−1
τk

< 2, and using the simple algebraic inequality a
a+b ≥

a−b
a , a, b > 0, τk

τk−1
> 1 − τk−1

ϕ2(τk−1)
. (d) Use part (c) in part (b), together

with the monotonicity hypotheses, to show P(
maxτk≤t≤τk−1 Bt

ϕ(t) > 1) ≤
√

2
π

√
2

τ
− 1

2
k−1ϕ(τk−1)

e
1
2 e−

(τ
− 1

2
k−1ϕ(τk−1))

2

2 . (e) Finally, again using monotonicities

and the definition of τk , check that

9Although this theorem was first announced by Paul Lévy and attributed to A.N. Kolmogorov, a
proof did not appear until (Sirao and Nisida, 1952).
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∫ τ1

0+
τ−

3
2 ϕ(τ)e−

ϕ2(τ )
2τ dτ =

∞∑

k=1

∫ τk

τk+1

1

τ
τ−

1
2 ϕ(τ)e−

(τ
− 1

2 ϕ(τ))2

2 dτ

≥
∑

k

τk − τk+1

τk
τ
− 1

2
k ϕ(τk)e

− ϕ2(τk )
2τk

≥
∑

k

√
τk
1

(τ
− 1

2
1 ϕ(τ1))

2+1

1

ϕ2(τk)
ϕ(τk)e

− ϕ2(τk )
2τk .

Invoke Borel–Cantelli I to complete the proof.]
(ii) Show10 that if ϕ belongs to the upper class at the origin then Bt < tϕ( 1

t )

for all sufficiently large t , i.e., ϕ( 1
t is an upper class function at infinity

for Brownian motion. [Hint: Use time-inversion invariance of Brownian
motion.]

(iii) Show that ϕ(t) = tθ is an upperclass function at the origin for 0 < θ <

1/2.

10Hölder continuity of Brownian paths does not extend to exponent α = 1/2. An important result
of Lévy (1937) shows that the modulus of continuity is only slightly worse, and at resolution δ is

given by ψ(δ) :=
√

2δ log( 1
δ
) in the sense that with probability one

limδ↓0
1

ψ(δ)
max

0≤t−s≤δ |Bt − Bs | = 1. (7.54)

In particular, for every ε > 0, the function ψ(t)(1+ ε) belongs to the upper class.



Chapter 8
Coupling Methods for Markov Chains
and the Renewal Theorem for Lattice
Distributions

The coupling method is a powerful tool of stochastic analysis that has enjoyed
many successes since its original introduction by Doeblin (1938) to prove
convergence to a unique invariant probability for finite state Markov chains.
In fact it was applied in Chapter 5 to obtain an error bound in the Poisson
approximation to the binomial distribution, i.e., the law of rare events. The
convergence to steady state for a class of finite state Markov chains together
with a proof of a related powerful result, the renewal theorem, is presented.
In the latter one seeks to find how much time a general random walk on
the integers with increasing paths, i.e., having non-negative integer-valued
displacements, spends in an interval of length m, say (n, n + m]. Renewal
theory computes the precise amount asymptotically as n →∞. This chapter
is devoted to a cornerstone theorem in the case of integer-valued renewal
times, while the much more general theory is provided as a special topic in
Chapter 25.

The notion of coupling was introduced by Doeblin as a method to prove convergence
to a unique invariant probability for irreducible aperiodic finite state Markov chains.

Definition 8.1. A Markov chain on a countable state space S and transition
probabilities pi j , i, j ∈ S is irreducible if for every i, j ∈ S there is a positive

integer n such that p(n)i j > 0, where p(n) denotes the n-step transition probability

matrix. If the greatest common divisor (g.c.d.) d of the set {n ≥ 1 : p(n)i i > 0} is
one for all i ∈ S then the Markov chain is said to be aperiodic. If on the other hand
d > 1 for all i ∈ S, then the chain is said to be periodic with period d.

The long-time behavior of Markov chains is a subject of great interest to theory
and applications. Before consideration of Doeblin’s ideas, let us record some of the

© Springer Nature Switzerland AG 2021
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most basic properties of an irreducible, aperiodic Markov chain X = {Xn : n ≥ 0}
on a denumerable state space S with one-step transition probabilities pi j , i, j ∈ S.

Definition 8.2. A state j ∈ S is said to be recurrent if Pj (Xn = j i.o.) = 1, and
transient if Pj (Xn = j i.o.) = 0.

The successive return times to the state j are defined by

τ
(0)
j = 0, τ

(1)
j := inf{n > 0 : Xn = j}, τ

(r)
j = inf{n > τ

(r−i)
j : Xn = j},

(8.1)

for r = 1, 2, . . ., with the convention that τ (r)j = ∞ if there is no n > τ
(r−1)
j for

which Xn = j . Write

ρi j = Pi (Xn = j for some n ≥ 1) = Pi (τ
(1)
j <∞). (8.2)

Using the strong Markov property for discrete parameter Markov chains (Theo-
rem 7.2), it follows that

Pi (τ
(r)
j <∞) = Pi (τ

(r−1)
j <∞ and X

τ
(r−1)
j +n

= j for some n ≥ 1)

= Ei (1[τ (r−1)
j <∞]PX

τ
(r−1)
j

(Xn = j for some n ≥ 1))

= Ei (1[τ (r−1)
j <∞])ρ j j = Pi (τ

(r−1)
j <∞)ρ j j . (8.3)

Therefore, by iteration,

Pi (τ
(r)
j <∞) = Pi (τ

(1)
j <∞)ρr−1

j j = ρi jρ
r−1
j j (r = 2, 3, . . .). (8.4)

In particular, with i = j ,

Pj (τ
(r)
j <∞) = ρr

j j (r = 1, 2, 3, . . .). (8.5)

Now

Pj (Xn = j i.o.) = Pj (∩∞r=1[τ (r)j <∞]) = lim
r→∞ Pj (τ

(r)
j <∞) =

{
1 if ρ j j = 1.
0 if ρ j j < 1.

(8.6)
Further, write N ( j) ≡ ∑∞

n=0 1[Xn= j] for the number of visits to the state j by the
Markov chain {Xn}n≥0, and denote its expected value by

G(i, j) = Ei N ( j) =
∞∑

n=0

p(n)i j . (8.7)
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G(i, j) is also referred to as the (discrete parameter) Green’s function of the Markov
chain. Also, if i ∈ S and p(n)i j > 0 for some n ≥ 1, denoted i → j , then we say that
j is accessible from i . Now using (8.4)

Ei N ( j) =
∞∑

r=0

Pi (N ( j) > r) = δi j +
∞∑

r=0

Pi (τ
(r+1)
j <∞) = δi j + ρi j

∞∑

r=0

ρr
j j ,

(8.8)
where δi j is 1 or 0 according as i = j or i �= j . Thus,

G(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

δi j if i �→ j, i.e., ρi j = 0,

δi j + ρi j/(1− ρ j j ) if i → j and ρ j j < 1,

∞ if i → j and ρ j j = 1.

(8.9)

This calculation provides two useful characterizations of recurrence. One is in terms
of the long-run expected number of returns and the other in terms of the probability
of eventual return.

Theorem 8.1.

a. Every state is either recurrent or transient. A state j is recurrent iff ρ j j = 1 iff
G( j, j) = ∞, and transient iff ρ j j < 1 iff G( j, j) ≡ (1 − ρ j j )

−1 < ∞. If j is

transient p(n)i j → 0 as n →∞ for all i .

b. If i is recurrent and p(n)i j > 0 for some n ≥ 1, denoted i → j , then j is recurrent,
and ρi j = ρ j i = 1. In particular, if for every i, j ∈ S, i → j and j → i , then
either every state is recurrent, or every state is transient.

c. Let i be recurrent, and S(i) := { j ∈ S : i → j}. Let π̄ be a probability
distribution on S(i). Then

Pπ̄ (Xn visits every state in S(i) i.o.) = 1. (8.10)

Proof. Part (a) follows from (8.6), (8.7), (8.9). For part (b), suppose i is recurrent
and i → j ( j �= i). Let Ar denote the event that the Markov chain visits j between
the r -th and (r + 1)st visits to state i . Then under Pi , Ar (r ≥ 0) are independent
events and have the same probability θ , say. Now θ > 0. For if θ = 0, then Pi (Xn =
j for some n ≥ 1) = Pi (

⋃
r≥0 Ar ) = 0, contradicting i → j . It now follows from

the second half of the Borel–Cantelli Lemma that Pi (Ar i.o.) = 1. This implies
G(i, j) = ∞ and hence, by (8.9), ρ j j = 1. Hence j is recurrent. Also, ρi j ≥
Pi (Ar i.o.) = 1. By the same argument, ρ j i = 1. Note that G( j, j) = 1+ ρ j j/(1−
ρ j j ) = 1/(1− ρ j j ) for transient states j ∈ S.

To prove part (c) use part (b) to get for arbitrary i ∈ S( j),

Pπ̄ (Xn visits i i.o.)
∑

k∈S( j)

π̄k Pk(Xn visits i i.o.)
∑

k∈S( j)

π̄k = 1. (8.11)
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Hence

Pπ̄

⎛

⎝
⋂

i∈S( j)

[Xn visits i i.o.]
⎞

⎠ = 1. (8.12)

�
Consider a Markov chain on a (countable) state space S having a transition

probability matrix p such that there is a probability π on S such that

π j =
∑

j∈S

πi pi j , ∀ j ∈ S. (8.13)

Then π is referred to as an invariant probability for the transition probabilities p
and/or for the Markov chain X .

Note that if π is an invariant probability for p, then then π j =∑
i∈S πi p(n)i j , n =

1, 2, . . . . Moreover, if X has initial distribution π , then (X0, X1, . . . ) is a stationary
process as defined in Definition 1.2, (Exercise 2).

Corollary 8.2. Suppose X has an invariant probability π on S, such that π j > 0 for
all j . Then X is recurrent.

Proof. Assume π j > 0 but j is transient. This immediately leads to a contradiction

since Ei N ( j) = ∑
n p(n)i j < ∞ implies p(n)i j → 0 as n → ∞, and therefore

0 < π j =∑
i∈S πi p(n)i j → 0 as n →∞. �

Remark 8.1. If π is an invariant probability for an irreducible p, then π j > 0∀ j .

For if π j > 0 for some j , the relation π j ′ = ∑
i∈S πi p(n)i j ′ ≥ π j p(n)j j ′ ∀ n implies

π j ′ > 0.

Construct a probability space (Ω,F , P) on which are defined two Markov chains
{X (1)

n : n ≥ 0} and {X (2)
n : n ≥ 0} with initial distributions μ and γ , respectively.

Define

T := inf{n ≥ 0 : X (1)
n = X (2)

n }, (8.14)

and

Y (1)
n :=

{
X (1)

n if T > n,

X (2)
n if T ≤ n.

(8.15)

Since T is a stopping time for the Markov process on S × S defined by {Xn :=
(X (1)

n , X (2)
n ) : n ≥ 0}, (w.r.t the filtration Fn := σ {X j : 0 ≤ j ≤ n}, n ≥ 0), it

follows that the coupled process defined by {Y (1)
n : n ≥ 0} has the same distribution

as {X (1)
n : n ≥ 0} (Exercise 1).
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Definition 8.3. Let Z1, Z2 be two random maps defined on probability space
(Ω,F , P) with values in the measurable space (S,S). A coupling of Z1 and Z2,
or a coupling of their respective distributions PZ1 and PZ2 , is any bivariate random
map (X (1), X (2)) with values in (S× S,S ⊗S) whose marginals coincide with PZ1

and PZ2 , respectively.

In particular, the pair {(X (1)
n , X (2)

n ) : n ≥ 0} constructed above defines a coupling
of (the distributions of) Markov processes with transition probabilities p having
respective initial distributions μ and γ , i.e., a coupling of the distributions Pμ,

Pγ . This coupling is used to define the coupled process {Y (1)
n : n ≥ 0} having

distribution Pμ. Other couplings are illustrated in the exercises.

Lemma 1 (A Coupling Lemma).

|Pμ(Xn ∈ B)− γ (B)| ≤ P(T > n), n ≥ 0. (8.16)

Proof. Since Y (1)
n = X (2)

n for n ≥ T one has, for all B ⊂ S,

|P(X (1)
n ∈ B)− P(X (2)

n ∈ B)| = |P(Y (1)
n ∈ B)− P(X (2)

n ∈ B)|
≤ |P(Y (1)

n ∈ B, n ≥ T )− P(X (2)
n ∈ B, n ≥ T )|

+ |P(Y (1)
n ∈ B, T > n)− P(X (2)

n ∈ B, T > n)|
= |P(Y (1)

n ∈ B, T > n)− P(X (2)
n ∈ B, T > n)|

≤ P(T > n).

�
Definition 8.4. If T <∞ a.s. one says that the coupling is successful,

It follows from the coupling lemma that if the Markov chain has a unique invariant
probability π , then the distribution of X (1)

n converges in total variation distance to
π , as n →∞ if the coupling can be shown to be successful. In particular, if μ = δi

(and T <∞ a.s.) one has

∑

j∈S

|p(n)i j − π j | −→ 0 as n →∞. (8.17)

Indeed, one can prove a stronger result, if T < ∞ a.s. To state this let Q(n) denote
the distribution (on (S∞,S⊗∞)) of the Markov process (X (1)

n )+ := {X (1)
n+m : m ≥

0} and Qπ that of X (2) = {X (2)
n : n ≥ 0}. Here S is the class of all subsets of S and

S⊗∞ is the product σ−field on the set S∞ of all sequences in S. Then one has

sup
A∈S⊗∞

|Q(n)(A)− Qπ (A)| −→ 0 as n →∞. (8.18)
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To prove this simply replace X (1)
n , X (2)

n in (8.17) by the after–n processes (X (1)
n )+,

(X (2)
n )+, respectively, and replace B ∈ S by A ∈ S⊗∞. The following result makes

use of a successful coupling. We use the same notation as above.

Theorem 8.3 (Convergence of Irreducible Aperiodic Markov Chains). Let p be an
irreducible aperiodic transition probability matrix on a countable state space S. If
p admits an invariant probability π then (8.18) holds for the distribution Q(n) of
the after–n process, whatever the initial distribution μ. In particular (8.17) holds for
every i , and the invariant probability is unique.

First we need a couple of simple but useful lemmas.

Lemma 2. Let p be an irreducible aperiodic transition probability matrix on a
countable state space S.

a. Then, for each pair (i, j) there exists an integer ν(i, j) such that p(n)i j > 0 for all
n ≥ ν(i, j).

b. If S is finite there exists ν0 such that p(n)i j > 0 ∀ i, j , if n ≥ ν0.

Proof.

a. Let Bi j = {ν ≥ 1 : p(ν)i j > 0}. For each j , B j j is closed under addition, since

p(ν1+ν2)
j j ≥ p(ν1)

j j p(ν2)
j j . By hypothesis, the greatest common divisor (g.c.d.) of B j j

is 1. We now argue that, if B is a set of positive integers closed under addition,
and has g.c.d. 1 then the smallest subgroup G of Z (a group under addition) that
contains B is Z. Note that G equals {u − v : u, v ∈ B}. If G does not equal Z,
then 1 �∈ G, so that G = {rn : n ∈ Z} for some r > 1. But, since B ⊂ G, this
would imply that the g.c.d. of B ≥ r , a contradiction.

We have shown that 1 ∈ G, i.e., there exists an integer b ≥ 1 such that
b + 1, b both belong to B j j . Let ν j = (2b + 1)2. If n ≥ ν j , one may write
n = q(2b+ 1)+ r , where r and q are integers, 0 ≤ r < 2b+ 1, and q ≥ 2b+ 1.
Then n = q{b+b+1}+r{b+1−b} = (q−r)b+(q+r)(b+1) ∈ B. Thus b(n)j j > 0

for all n ≥ ν j . Find k ≡ ki j such that p(k)i j > 0 then p(n+k)
i j ≥ p(k)i j p(n)j j > 0 for

all n ≥ ν j . Now take ν(i, j) = ki j + ν j .

b. If S is finite, let ν0 = max{ν j+ki j : i, j ∈ S}. Then, for all i, j , one has p(n)i j > 0
provided ν ≥ ν0.

�
Lemma 3. Let p = ((pi j )) be an irreducible aperiodic transition probability matrix
on a (countable) state space S, which admits an invariant probability π . Then the
Markov chain X = (X(1),X(2)) on S×S formed by two independent Markov chains
X(i) = {X (i)

n : n ≥ 0}, i = 1, 2, each having transition probability p, is irreducible,
aperiodic and has an invariant probability π × π . In particular, X is recurrent.
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Proof. The transition probabilities of X are given by

r((i, i ′); ( j, j ′)) := P
(

X (1)
n+1 = j, X (2)

n+1 = j ′ | X (1)
n = i, X (2)

n = i ′
)

= pi j pi ′ j ′ ((i, i ′), ( j, j ′) ∈ S × S).

It is simple to check that π ×π is an invariant probability for X. Also, by Lemma 2,
there exist integers ν(i, j) such that p(n)i j > 0 for all n ≥ ν(i, j). Since for all
n ≥ max{ν(i, j), ν(i ′, j ′)} ≡ γ (i, i ′; j, j ′), say, the n-step transition probability
r (n) ((i, i ′); ( j, j ′)) is at least p(n)i j p(n)i ′, j ′ > 0, the Markov chain X is irreducible and
aperiodic. By Corollary 8.2 and Remark 8.1, X is recurrent. �
Proof of Theorem 8.3. Using the notation of Lemma 3, let X = (X(1),X(2)) denote
the Markov chain on S × S, with X(1) and X(2) independent each with transition
probability matrix p, but X(1), having an (arbitrary) initial distribution μ and X(2)

having the invariant initial distribution π . By recurrence of X ≡ (X(1),X(2)), the
first passage time τ( j, j) of X to ( j, j) is finite a.s., for every j ∈ S. Therefore,
defining T as in (8.14)

T ≤ τ( j, j) <∞ a.s. (8.19)

As argued earlier, (8.17), (8.18) follows from (8.19). �
We now turn to another important application of coupling, namely for a proof of

the renewal theorem for lattice random variables. Consider a sequence {Yn : n ≥ 1}
of i.i.d. positive integer-valued random variables, and Y0 a non-negative integer-
valued random variable independent of {Yn : n ≥ 1}. The partial sum process
S0 = Y0, Sk = Y0 + · · · + Yk (k ≥ 1) defines the so-called delayed renewal process
{Nn : n ≥ 1}:

Nn := inf{k ≥ 0 : Sk ≥ n} (n = 0, 1, . . . ), (8.20)

with Y0 as the delay and its distribution as the delay distribution. In the case Y0 ≡ 0,
{Nn : n ≥ 0} is simply referred to as a renewal process. This nomenclature is
motivated by classical renewal theory in which components subject to failure (e.g.,
light bulbs) are instantly replaced upon failure, and Y1,Y2, . . . , represent the random
durations or lifetimes of the successive replacements. The delay random variable
Y0 represents the length of time remaining in the life of the initial component with
respect to some specified time origin. For a special context, again consider a Markov
chain {Xn : n ≥ 0} on a (countable) state space S, and fix a state y such that the
first passage time τy ≡ τ

(0)
y to state y is finite a.s., as are the successive return times

τ
(k)
y to y (k ≥ 1). By the strong Markov property, Y0 := τ

(0)
y , Yk := τ

(k)
y − τ

(k−1)
y

(k ≥ 1), are independent, with {Yk : k ≥ 1} i.i.d. The renewal process (8.20) may
now be defined with Sk = τ

(k)
y (k ≥ 1), the kth renewal occurring at time τ (k)y if

τ
(0)
y = 0, i.e., y is the initial state.
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It may be helpful to think of the partial sum process {Sk : k ≥ 0} to be a point
process 0 ≤ S0 < S1 < S2 < · · · realized as a randomly located increasing
sequence of renewal times or renewal epochs on Z+ = {0, 1, 2, · · · }. By the
definition (8.20) the processes {Sk : k ≥ 0} and {Nn : n ≥ 0} may be thought
of as (approximate) inverse functions of each other on Z+. Another related process
of interest is the residual (remaining) life process defined by

Rn := SNn − n = inf{Sk − n : k such that Sk − n ≥ 0}. (8.21)

Remark 8.2. The indices n for which Rn = 0 are precisely the renewal times,
including the delay. In general SNn−1 < n ≤ SNn and when the renewal process
is viewed at time n, Rn is the residual time until the next renewal; also see
Exercises 11, 12.

Proposition 8.4. Let f be the probability mass function of Y1. Then the following
hold:

a. {Rn : n ≥ 0} is a Markov chain on S = Z+ with the transition probability matrix
p = ((pi, j )) given by

p0, j = f ( j + 1) for j ≥ 0, p j, j−1 = 1 for j ≥ 1. (8.22)

b. If μ ≡ EY1 <∞, then there exists a unique invariant probability π = {π j : j ≥
0} for {Rn : n ≥ 0} with probability mass function given by the tail probability
distribution function for f :

π j =
∞∑

i= j+1

f (i)/μ ( j = 0, 1, 2, · · · ). (8.23)

c. If EY1 = ∞, then π j = ∑∞
i= j+1 f (i) ( j ≥ 0) provides an invariant measure

π = {π j : j ≥ 0} for p, which is unique up to a multiplicative constant.

Proof.

a. Although the result is clear informally (Exercise 7), here is a formal argument.
Observe that {Nn : n ≥ 0} are {Fk : k ≥ 0}–stopping times where Fk = σ {Y j :
0 ≤ j ≤ k}. We will first show that Vn := SNn (n ≥ 0) has the (inhomogeneous)
Markov property. For this note that if SNn > n then Nn+1 = Nn and SNn+1 =
SNn , and if SNn = n then Nn+1 = Nn + 1 and SNn+1 = SNn + YNn+1. Hence

SNn+1 = SNn1[SNn>n] + (SNn + YNn+1)1[SNn=n]

= SNn1[SNn>n] + (S+Nn
)11[SNn=n ], (8.24)

where S+Nn
is the after–Nn process {(S+Nn

)k := SNn+k : k = 0, 1, 2, . . . }.
It follows from (8.24) and the strong Markov property that the conditional



8 Coupling for Markov Chains & Lattice Renewals 107

distribution of Vn+1 ≡ SNn+1 , given the pre–Nn σ−field Gn ≡ FNn , depends
only on Vn = SNn . Since Vn is Gn–measurable, it follows that {Vn : n ≥ 0} has
the Markov property, and that its time-dependent transition probabilities are

qn(n, n + j) ≡ P(Vn+1 = n + j | Vn = n) = P(Y1 = j) = f ( j), j ≥ 1,

qn(m,m) = 1, m > n. (8.25)

Since Rn = Vn − n (n ≥ 0), {Rn : n ≥ 0} has the Markov property, and its
transition probabilities are P(Rn+1 = j | Rn = 0) ≡ P(Vn+1 = n + 1 + j |
Vn = n) = f ( j + 1) ( j ≥ 0), P(Rn+1 = j − 1 | Rn = j) ≡ P(Vn+1 = n + j |
Vn = n + j) = 1 ( j ≥ 1). Thus {Rn : n ≥ 0} is a time-homogeneous Markov
process on S = Z+ with transition probabilities given by (8.22).

b. Assume μ ≡ EY1 < ∞. If π = {π j : j ≥ 0} is an invariant probability for p,
then one must have

π0 =
∞∑

j=0

π j p j,0 = π0 p0,0 + π1 p1,0 = π0 f (1)+ π1,

πi =
∞∑

j=0

π j p j,i = π0 p0,i + πi+1 pi+1,i = π0 f (i + 1)+ πi+1 (i ≥ 1).

Thus

πi − πi+1 = π0 f (i + 1) (i ≥ 0). (8.26)

Summing (8.26) over i = 0, 1, . . . , j − 1, one gets π0−π j = π0
∑ j

i=1 f (i), or,
π j = π0

∑∞
i= j+1 f (i) ( j ≥ 0). Summing over j one finally obtains π0 = 1/μ,

since
∑∞

j=0(1− F( j)) = μ, with F( j) =∑ j
i=0 f (i).

c. If π = {π j : j ≥ 0} is an invariant measure for p, then it satisfies (8.26), with
π i replacing πi (i ≥ 0). Hence, by the computation above, π j = π0(1− F( j))
( j ≥ 0). One may choose π0 > 0 arbitrarily, for example, π0 = 1.

�
Thus the residual lifetime process {Rn : n ≥ 0} is a stationary Markov process if

and only if (i) μ ≡ EY1 <∞ and (ii) the delay distribution is given by π in (8.23).
Proposition 8.4 plays a crucial role in providing a successful coupling for a proof

of the renewal theorem below. Define the lattice span d of the probability mass
function (pmf) f on the set N of natural numbers as the greatest common divisor
(g.c.d) of { j ≥ 1 : f ( j) > 0}.
Theorem 8.5 (Erdös-Feller-Pollard Renewal Theorem). Let the common pmf f of
Y j on N ( j ≥ 1) have span 1 and μ ≡ EY j < ∞. Then whatever the (delay)
distribution of Y0 one has for every positive integer m,
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lim
n→∞E(Nn+m − Nn) = m

μ
. (8.27)

Proof. On a common probability space (Ω,F , P) construct two independent
sequences of random variables {Y0,Y1,Y2, · · · } and {Ỹ0, Ỹ1, Ỹ2, · · · } such that (i) Yk

(k ≥ 1) are i.i.d. with common pmf f and the same holds for Ỹk (k ≥ 1), (ii) Y0
is independent of {Yk : k ≥ 1} and has an arbitrary delay distribution, while Ỹ0 is
independent of {Ỹk : k ≥ 1} and has the equilibrium delay distribution π of (8.23).
Let {Sk : k ≥ 0}, {S̃k : k ≥ 0} be the partial sum processes, and {Nn : n ≥ 0},
{Ñnn ≥ 0} the renewal processes, corresponding to {Yk : k ≥ 0} and {Ỹk : k ≥ 0},
respectively. The residual lifetime processes {Rn := SNn − n : n ≥ 0} and
{R̃n := S̃Ñn

−n : n ≥ 0} are independent Markov chains on Z+ = {0, 1, 2, · · · } each
with transition probabilities given by (8.22). Since the span of f is one, it is simple
to check that these are aperiodic and irreducible (see the proof of Lemma 2 and
Exercise 8). Hence by Lemma 3, preceding the proof of Theorem 8.3, the Markov
chain {(Rn, R̃n) : n ≥ 0} on Z+ × Z+ is recurrent, so that

T := inf{n ≥ 0 : (Rn, R̃n) = (0, 0)} <∞ a.s. (8.28)

Define

R′n :=
{

Rn if T > n,

R̃n if T ≤ n.
(8.29)

Then {R′n : n ≥ 0} has the same distribution as {Rn : n ≥ 0}. Note also that

Nn+m − Nn =
n+m∑

j=n+1

1[R j=0], Ñn+m − Ñn =
n+m∑

j=n+1

1[R̃ j=0], (8.30)

E(Ñn+m − Ñn) =
n+m∑

j=n+1

P(R̃ j = 0) = mπ0 = m/μ. (8.31)

Now

E(Nn+m − Nn)

= E(Nn+m − Nn)1[T>n] + E(Ñn+m − Ñn)1[T≤n]

= E(Nn+m − Nn)1[T>n] − E(Ñn+m − Ñn)1[T>n] + E(Ñn+m − Ñn).

Since the first two terms on the right side of the last equality are each bounded by
m P(T > n)→ 0 as n →∞, the proof is complete. �
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Corollary 8.6. If f has a lattice span d > 1 and μ ≡ EY1 <∞ then, whatever the
delay distribution on the lattice {kd : k = 1, 2, . . . },

lim
n→∞E(Nnd+md − Nnd) = md

μ
(m = 1, 2, · · · ). (8.32)

Proof. Consider the renewal process for the sequence of lifetimes {Yk/d : k =
1, 2, · · · }, and apply Theorem 8.5, noting that EY1/d = μ/d. �

For another perspective on renewal theory, by conditioning on Y1 and noting
that Sn − Y1, n ≥ 1 is also an ordinary renewal process with the same inter-arrival
distribution f , it follows that if Sn =∑n

j=0 Y j , n = 0, 1, . . . is an ordinary (Y0 = 0)
renewal process, then the renewal measure defined by

u(k) =
∞∑

n=0

P(Sn = k) ≡ E

∞∑

n=0

1[Sn = k], k = 0, 1, . . . , (8.33)

solves the equation

u(k) = δ0(k)+
k∑

j=0

f ( j)u(k − j), k = 0, 1, 2, . . . , (8.34)

where f ( j) = P(Y1 = j), j = 0, 1, 2, . . . (Exercise 6). The equation (8.34) is a
special case of the so-called renewal equation

v(k) = g(k)+
k∑

j=0

f ( j)v(k − j), k = 0, 1, 2, . . . , (8.35)

where g = {g(k) : k = 0, 1, . . . } ∈ �∞, and f = { f ( j) : j = 0, 1, . . . } is a
probability mass function.

Exercises

1. (a) Suppose p is an irreducible periodic transition probability matrix on a
countable state space S (of period d > 1). Then the Markov chain
{Xn := (X (1)

n , X (2)) : n ≥ 0} with {X (i)
n : n ≥ 0}, i = 1, 2, independent

Markov chains each with transition probability p, then {Xn : n ≥ 0} is not
irreducible, and has d equivalence classes.

(b) Example:
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p =

⎡

⎢
⎢
⎣

0 1 0 0
1
2 0 1

2 0
0 1

2 0 1
2

0 0 1 0

⎤

⎥
⎥
⎦ (d = 2)

2. (a) Show that if π is an invariant probability for p, then π j =
∑

i∈S πi p(n)i j , ∀n = 1, 2, . . . .
(b) Show that if X has initial distribution π then (X0, X1, . . . ) is a stationary

process as defined in Definition 1.2.
3. Show that the product probability measure P × Q always provides a trivial

coupling of two distributions P ,Q on (S,S).
4. (Monotone Coupling) Let X1 and X2 be Bernoulli 0 − 1-valued random

variables with P(Xi = 1) = pi , i = 1, 2 with p1 < p2. Let U be a uniformly
distributed random variable on [0, 1]. Let Yi = 1[U≤pi ], i = 1, 2. Compute the
distribution of (Y1,Y2) and check that (Y1,Y2) is a coupling of (X1, X2) such
that Y1 ≤ Y2.

5. (Maximal Coupling)1 Suppose that μ1, μ2 are probability measures defined on
the power set of a finite set S. Let C denote the set of all couplings (X1, X2) of
μ1, μ2. Show that ||μ1 − μ2||T V = inf(X1,X2)∈C P(X1 �= X2), where || · ||T V

denotes the total variation norm.2[Hint: Show that the infimum is achieved
by the coupling (X∗1, X∗2) defined as follows: Let S1 = {x ∈ S : μ1(x) >
μ2(x)}, S2 = Sc

1, p∗i =
∑

x∈Si
|μ1 − μ2|, p∗ = p∗1 + p∗2 . With probability

p∗, choose a value X∗1 = X∗2 = x from the distribution 1
p∗μ1(x) ∧ μ2(x) or,

with probability 1− p∗ choose a value X∗1 from the distribution 1
1−p∗ (μ1(x)−

μ2(x)), x ∈ S1, and independently choose a value X∗2 from the distribution
1

1−p∗ (μ2(x) − μ1(x)), x ∈ S2. Check that (X∗1, X∗2) ∈ C and P(X∗1 �= X∗2) =
1− p∗ = ||μ1 − μ2||T V . ]

6. Verify the solution to the equation (8.34).
7. Give an informal argument to prove Proposition 8.4(a). [Hint: Given Rn = 0,

Rn+1 = j means that YNn+1 = j + 1 given SNn = n. The other part of (a) is
obvious.]

8. Prove that the residual renewal process {Rn : n = 0, 1, 2 . . . }, i.e., its transition
probability, is aperiodic and irreducible if the probability mass function f has
unit span.

9. Let X1, X2, . . . be an i.i.d. Bernoulli 0 − 1 sequence with p = P(X1 = 1).
Define S0 = 0, S0 = inf{n > 0 : (Xn, Xn+1) = (1, 1)}, S1 = inf{n > S0 :
(Xn, Xn+1) = (1, 1)}, . . . , Sm = inf{n > Sm−1 : (Xn, Xn+1) = (1, 1)},m ≥
1.

1A more general version of this result for probabilities on Polish spaces is given in the monograph
Lindvall (1992). This provides a proof of the maximality of the coupling used for the Poisson
approximation in Chapter 5.
2BCPT p. 136.
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(a) Show that S0, S1, . . . is a delayed renewal process.
(b) Show that E(Sm − Sm−1) = 4,m ≥ 1, and ES0 = 5.[Hint: For the

latter write ES0 = ES01[X1=0] + ES01[X1=1,X2=0] + ES01[X1=1,X2=1] and
condition each term accordingly.]

(c) Generalize this example to an arbitrary fixed pattern (θ1, . . . , θk) ∈ {0, 1}k .

10. (Generalized Fibonacci Sequences) Fix a positive integer k ≥ 2. The general-
ized Fibonacci sequence is defined3 by xn = 0, n ≤ 0, xn = 1, 1 ≤ n < k,
xn = ∑k

i=1 xn−i , n ≥ k. The standard Fibonacci sequence is obtained in the
case k = 2.

(a) Show that there is a unique number q in (0, 1) such that
∑k

j=1 q j = 1.

(b) Define a probability distribution f ( j) = q j , j = 1, . . . , k, f ( j) =
0, j ≥ k + 1, on the positive integers for the i.i.d. times between renewals
Y1,Y2 . . . . Let Sn = ∑n

j=1 Y j be the corresponding ordinary renewal
process, and N (n) = sup{ j ≥ 0 : S j ≤ n}.
(i) Show that P(SN (n) = n) = qn xn+1. [Hint: Note that P(SN (0) = 0) =

1, and for n ≥ 1, P(SN (n) = n) =∑
( j1,..., jm )∈{1,...,k}m ,∑m

i=1 ji=n−1,m≥1
P(Y1 = j1, . . . ,Ym = jm). Check that for each n ≥ 1, cn = | ∪∞m=1

{( j1, . . . , jm) ∈ {1, . . . , k}m :∑k
i=1 ji = n−1}| obeys the generalized

Fibonacci recursion, i.e., xn = cn∀n.]
(ii) Show that u(n) = P(N (n) = n) satisfies the renewal equation u(n) =

∑n
j=1 u(n − j) f ( j), and qn−1xn → (1−q)2

kqk+2−(k+1)qk+1+q
as n →∞.

(c) Compute the rate q for the standard Fibonacci sequence, i.e., k = 2.

11. Consider that SNn−1 < n ≤ SNn . For an ordinary renewal process, the age
of a renewal , is An = n − SNn−1, n > S1 ≡ Y1, and the lifespan is Ln =
Rn + An = SNn − SNn−1, n > S1 ≡ Y1,, where Rn is the residual (remaining)
life defined by (8.21), i.e., Rn := SNn − n, n = 1, 2, . . . . Fix positive integers4

r, a, � ≥ 1. Assume that the span of the renewal distribution is h = 1 with mean
0 < μ <∞.

(a) Show that P(Rn = r), n ≥ 1 satisfies a renewal equation with g(n) =
f (n + r), n ≥ 1, and limn→∞ P(Rn = r) =

∑∞
k=r+1 f (k)

μ
.

(b) Show that P(An = a), n ≥ 1 satisfies a renewal equation, g(n) =
f (n)1[a,∞](n) and limn→∞ P(An = a) = 1

μ

∑∞
n=a f (n).

(c) Show that P(Ln = �), n ≥ 1 satisfies a renewal equation with g(n) =
f (�)1{1,...,�}(n), n = 0, 1, . . . , and limn→∞ P(Ln = �) = � f (�)

μ
.

(d) Show

3This was introduced by Miles (1960). The analysis via renewal theory was inspired by Christensen
(2012).
4The formulae can be a bit different for integer renewal times than for continuously distributed
renewals.
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P(An = a, Ln = �)

=

⎧
⎪⎪⎨

⎪⎪⎩

f (�) if a = n, � > n

P(Sm = n − a for some m) f (�) if a < n, � > n

0 otherwise.

[Hint: If a = n, � > n then [An = n] occurs if and only Y1 = k for some
k > n, and, in particular also for [Ln = �] to occur, k = �. If a < n, � > n,
then An = a if and only if there is a renewal at n − a, an event with
probability P(Sm = n − a for some m) independently of the next renewal
time.]

12. (Waiting Time/Inspection Paradox) The waiting time paradox, or inspection
paradox, refers to the counterintuitive experience of longer average waits
for arrivals (renewals) relative to arbitrarily fixed times; e.g., occurrences of
defectives on an assembly line. To examine how it may happen in the case of
integer renewal times with unit span, assume EY 2

1 = σ 2 + μ2 <∞, and show

that in steady state5 (a) ERn = 1
2 ((

σ 2

μ2 + 1)μ − 1), where σ 2

μ2 is the squared

coefficient of variation6 of Y1, and (b) 1
2 ((

σ 2

μ2 + 1)μ − 1) > μ if and only

if σ 2 > μ2 + μ. [Intuitively, for a system in equilibrium if there is a lot of
variability in production then to achieve the mean μ many intervals will be
short to compensate for the long intervals, so it is more likely the inspection is
made during a long window between arrivals than a short one].

5More generally one may use (i) of the previous exercise to compute limn→∞ ERn .
6The precise form of the mean residual time for integer renewal times differs a bit from that of
arrivals having a density, see Chapter 25, Exercise 4.



Chapter 9
Bienaymé–Galton–Watson Simple
Branching Process and Extinction

The Bienaymé–Galton–Watson simple branching process is defined by the
successive numbers Xn of progeny at the n-th generation, n = 0, 1, 2, . . . ,
recursively and independently generated according to a given offspring distri-
bution, starting from a non-negative integer number of initial X0 progenitors.
The state zero, referred to as extinction, is an absorbing state for the process.
In this chapter a celebrated formula for the probability of extinction is given as
a fixed point of the moment generating function of the offspring distribution.
The mean μ of the offspring distribution is observed to play a characteristic
role in the determination of the behavior of the generation sizes Xn as
n → ∞. The critical case in which μ = 1 is analyzed under a finite second
moment condition to determine the precise asymptotic nature of the survival
probability, both unconditionally and conditionally on survival, in a theorem
referred to as the Kolmogorov–Yaglom–Kesten–Ney–Spitzer theorem.

The (discrete parameter) Bienaymé–Galton–Watson simple branching process {Xn :
n = 0, 1, 2, . . .} describes the successive sizes of generations resulting from an
initial number of X0 individuals as follows. Let {L(n)

i : i, n = 1, 2, . . .} be a family

of i.i.d. random variables with distribution f (k) = P(L(n)
i = k), k = 0, 1, 2,

. . . , referred to as the offspring distribution. If the initial generation is comprised
of X0 ≥ 1 individuals, then the first generation has size X1 = ∑X0

i=1 L(1)
i , while

if X0 = 0, then one defines X1 = 0. This random replication rule is extended
to successive generations by the stochastic recursion for the number of n + 1-st
generation offspring as:

© Springer Nature Switzerland AG 2021
R. Bhattacharya, E. C. Waymire, Random Walk, Brownian Motion, and Martingales,
Graduate Texts in Mathematics 292, https://doi.org/10.1007/978-3-030-78939-8_9
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Fig. 9.1 Extinction Probability for Subcritical and Supercritical Branching

Xn+1 =
{∑Xn

i=1 L(n+1)
i if Xn ≥ 1

0 if Xn = 0
, n = 0, 1, 2, . . . . (9.1)

The state space is S = {0, 1, 2, . . .} and the boundary state i = 0 is absorbing
(permanent extinction). Write ρi0 for the probability that extinction eventually
occurs given X0 = i . Also write ρ = ρ10. Then ρi0 = ρi since each of the i
sequences of generations arising from the i initial individuals has the same chance
ρ of extinction, and the i sequences evolving independently must all be extinct in
order that there may be eventual extinction, given X0 = i .

If f (0) = 0, then ρ = ρ10 = 0 and extinction is impossible. If f (0) = 1, then
ρ10 ≥ P(X1 = 0 | X0 = 1) = 1 and extinction is certain (no matter what X0 is).
To avoid these and other trivialities we assume, unless otherwise specified,

0 < f (0) < 1. (9.2)

As will be seen the extinction probability depends on the mean number of offspring
as depicted in Figure 9.1. The case in which μ < 1 is referred to as subcritical,
μ = 1 as critical, and μ > 1 as supercritical.

Theorem 9.1. Assume 0 < f (0) < 1. For the Bienaymé–Galton–Watson simple
branching process with μ = ∑∞

k=1 k f (k) < ∞, X0 = i , the probability
P(limn→∞ Xn = 0) of eventual extinction is ρi and ρ = ρ10 is the smallest fixed
point of f̂ (t) =∑∞

k=0 tk f (k), 0 ≤ t ≤ 1. Moreover ρ = 1 iff μ ≤ 1.

Proof. First let us consider the case f (0) + f (1) < 1. Introduce the probability
generating function of f :

f̂ (z) =
∞∑

j=0

f ( j)z j = f (0)+
∞∑

j=1

f ( j)z j (|z| ≤ 1). (9.3)
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Since a power series can be differentiated term by term within its radius of
convergence, one has

f̂ ′(z) ≡ d

dz
f̂ (z) =

∞∑

j=1

j f ( j)z j−1 (|z| < 1). (9.4)

If the mean μ of the number of particles generated by a single particle is finite, i.e.,
if

μ ≡
∞∑

j=1

j f ( j) <∞, (9.5)

then (9.4) holds even for the left-hand derivative at z = 1, i.e.,

μ = f̂ ′(1). (9.6)

Since f̂ ′(z) > 0 for 0 < z < 1, f̂ is strictly increasing. Also, since f̂ ′′(z) (which
exists and is finite for 0 ≤ z < 1) satisfies

f̂ ′′(z) ≡ d2

dz2 f̂ (z) =
∞∑

j=2

j ( j − 1) f ( j)z j−2 > 0 for 0 < z < 1, (9.7)

the function f̂ is strictly convex on [0, 1]. In other words, the line segment joining
any two points on the curve y = f̂ (z) lies strictly above the curve (except at the
two points joined). Because f̂ (0) = f (0) > 0 and f̂ (1) = ∑∞

j=0 f ( j) = 1, the

possible graph of f̂ is as depicted in Figure 9.1, accordingly.
The maximum of f̂ ′(z) is μ, which is attained at z = 1. Hence, in the case

μ > 1, the graph of y = f̂ (z) must lie below that of y = z near z = 1 and, because
f̂ (0) = f (0) > 0, must cross the line y = z at a point z0, 0 < z0 < 1. Since the
slope of the curve y = f̂ (z) continuously increases as z increases in (0, 1), z0 is the
unique solution of the equation z = f̂ (z) that is smaller than 1.

In case μ ≤ 1, y = f̂ (z) must lie strictly above the line y = z, except at z = 1.
For if it meets the line y = z at a point z0 < 1, then it must go under the line in the
immediate vicinity to the right of z0, since its slope falls below that of the line (i.e.,
unity). In order to reach the height f̂ (1) = 1 (also reached by the line at the same
value z = 1) its slope then must exceed 1 somewhere in (z0, 1]; this is impossible
since f̂ ′(z) ≤ f̂ ′(1) = μ ≤ 1 for all z in [0, 1]. Thus, the only solution of the
equation z = f̂ (z) is z = 1.

Now observe

ρ = ρ10 =
∞∑

j=0

P(X1 = j | X0 = 1)ρ j0 =
∞∑

j=0

f ( j)ρ j = f̂ (ρ), (9.8)
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thus if μ ≤ 1, then ρ = 1 and extinction is certain. On the other hand, suppose
μ > 1. Then ρ is either z0 or 1. We shall now show that ρ = z0 (< 1). For this,
consider the quantities

qn := P(Xn = 0 | X0 = 1) (n = 1, 2, . . .). (9.9)

That is, qn is the probability that the sequence of generations originating from a
single particle is extinct at time n. As n increases, qn ↑ ρ; for clearly, [Xn = 0] ⊂
[Xm = 0] for all m ≥ n, so that qn ≤ qm . Also

[ lim
n→∞ Xn = 0] =

∞⋃

n=0

[Xn = 0] = [extinction occurs].

Now, by independence of the generations originating from different particles,

P(Xn = 0 | X0 = j) = q j
n ( j = 0, 1, 2, . . .),

qn+1 = P(Xn+1 = 0 | X0 = 1) = P(X1 = 0 | X0 = 1)

+
∞∑

j=1

P(X1 = j, Xn+1 = 0 | X0 = 1)

= f (0)+
∞∑

j=1

P(X1 = j | X0 = 1)P(Xn+1 = 0 | X0 = 1, X1 = j)

= f (0)+
∞∑

j=1

f ( j)q j
n = f̂ (qn) (n = 1, 2, . . .). (9.10)

Since q1 = f (0) = f̂ (0) < f̂ (z0) = z0 (recall that f̂ (z) is strictly increasing in z
for 0 < z < 1), one has using (9.10) with n = 1, q2 = f̂ (q1) < f̂ (z0) = z0, and so
on. Hence, qn < z0 for all n. Therefore, ρ = limn→∞ qn ≤ z0. This proves ρ = z0.
If f (0) + f (1) = 1 and 0 < f (0) < 1, then f̂ ′′(z) = 0 for all z, and the graph of
f̂ (z) is the line segment joining (0, f (0)) and (1, 1). Hence, ρ = 1 in this case. �

Let us now compute the average size of the nth generation. One has

E(Xn+1 | X0 = 1) = E

( Xn∑

i=1

L(n+1)
i

∣
∣
∣
∣ X0 = 1

)

= E

[

E

( Xn∑

i=1

L(n+1)
i

∣
∣
∣
∣ Xn

) ∣
∣
∣
∣ X0 = 1

]

= E [μXn | X0 = 1] = μE(Xn | X0 = 1). (9.11)
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Continuing in this manner, one obtains

E(Xn+1 | X0 = 1) = μE(Xn | X0 = 1) = μ2
E(Xn−1 | X0 = 1)

= · · · = μn
E(X1 | X0 = 1) = μn+1. (9.12)

It follows that

E(Xn | X0 = j) = jμn . (9.13)

Thus, in the subcritical case (μ < 1), the expected size of the population at time n
decreases to zero exponentially fast as n →∞. In particular, therefore,

P(Xn > 0 | X0 = 1) =
∞∑

j=1

P(Xn = j | X0 = 1) ≤ E(Xn | X0 = 1) = μn

(9.14)
goes to zero exponentially fast if μ < 1. In the critical case (μ = 1), the expected
size at time n does not depend on n (i.e., it is the same as the initial size).

Finally in the supercritical case (μ > 1), the expected size of the population
increases to infinity exponentially fast. These processes are examined further in
Chapter 14. However, we will conclude this chapter with a classic result on the
decay of processes in the critical case. In particular we prove the following

Theorem 9.2 (Kolmogorov–Yaglom–Kesten–Ney–Spitzer). If μ= 1 and σ 2 :=∑∞
k=1 k(k − 1) f (k) <∞, then

a. limn→∞ n P(Xn > 0) = 2
σ 2

b. limn→∞ P( Xn
n > x |Xn > 0) = e

− 2x
σ2 x ≥ 0.

The proof is given below following a preparatory example and comparison lemma.
Notice that if μ = 1, then the variance σ 2 =∑∞

k=1(k−μ)2 f (k) of the offspring
distribution coincides with the second factorial moment γ 2 =∑∞

k=1 k(k − 1) f (k).

Remark 9.1. In this generality Theorem 9.2 is often referred to as the Kesten-
Ney-Spitzer theorem. However, due to earlier versions of these results which were
originally proved1 under stronger (finite third moment) assumptions, the first result
is often called Kolmogorov’s probability decay rate and the latter2 is Yaglom’s
exponential law.

Let ĝ(s) = ∑∞
k=0 sk g(k) ≡ Es X1 be the generating function of X1, 0 ≤ s ≤ 1.

Denote the generating function of Xn by ĝ(n). Note that, due to the independence

1Kolmogorov (1938).
2Yaglom (1947).
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of Xn−1 and the i.i.d. sequence {L(n)
i : i = 1, 2, . . . }, for n > 1, the generating

function of Xn =∑Xn−1
i=1 L(n)

i is given by

Es Xn = EE(s
∑Xn−1

i=1 L(n)i |Xn−1)

= Eĝ(s)Xn−1 = ĝ(ĝ(n−1)(s)). (9.15)

That is, one has the useful property that ĝ(n) is the n-fold composition of ĝ.
The proof of Theorem 9.2 will be based on a comparison of the general case to

the following explicit example.

Example 1 (Geometric Offspring Distribution: Explicit Calculations). In the
important special case of (critical) geometric offspring distribution g(0) = p =
1 − q, g(k) = q2 pk−1, k = 1, 2 . . . , this result may be proven by an explicit
computation. Note that

∑∞
k=1 kg(k) = 1, and σ 2 = ∑∞

k=2 k(k − 1)g(k) = 2p/q.
This particular form of the critical “geometric distribution” is selected to afford
some flexibility with the size of second factorial moment σ 2 which will be
exploited in the proof of Theorem 9.2 below. In the case of this example one
has ĝ(s) = ∑∞

k=0 g(k)sk = p−(p−q)s
1−ps and the generating function of Xn is

defined by the composite function ĝo(n)(s) inductively given by ĝo(1)(s) := ĝ(s),
ĝo(n+1)(s) := ĝ(ĝo(n)(s)). One then has

ĝo(n)(s) = np − (np − q)s

q + np − nps
, (9.16)

as can be easily verified by mathematical induction (Exercise 5). Therefore, taking
s = 0,

n P(Xn > 0) = n(1− ĝo(n)(0)) = nq

q + np
→ 2

σ 2 as n →∞. (9.17)

Similarly, taking s = eit/n the conditional distribution of 1
n Xn given Xn > 0 has

characteristic function

E(eit Xn/n|Xn > 0) = ĝo(n)(eit/n)− ĝo(n)(0)

1− ĝo(n)(0)
(= qeit/n

q + np(1− eit/n)
). (9.18)

In particular, using L’Hospital’s rule,

lim
n→∞E(eit Xn/n|Xn > 0) = 1

1− i t σ
2

2

t ∈ R. (9.19)

Hence, by the continuity theorem, the conditional distribution converges weakly to
the exponential distribution.
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To proceed with the general case it is sufficient to establish that the equality in (9.18)
for each n and all s ∈ [0, 1) can much more generally be replaced by a limit as
n → ∞ which is uniform in s. This will be accomplished with the aid of the
following lemma.3

Lemma 1 (Spitzer’s Comparison Lemma). Suppose that f and g are mean one
probability mass functions on the non-negative integers having probability generat-
ing functions f̂ (s) =∑∞

k=0 s j f ( j) and ĝ(s) =∑∞
j=0 s j g( j), respectively. Assume

that

f̂ ′(1−) = ĝ′(1−) = 1, f̂ ′′(1−) < ĝ′′(1−) <∞.

Then there exist integers k and m such that

f̂ o(n+k)(s) ≤ ĝo(n+m)(s) for all s ∈ [0, 1], n = 0, 1, 2, . . . .

Proof. For simplicity, we prove the lemma under the stronger assumption that the
radius of convergence of f̂ is larger than one here, and provide steps for the proof
under the state hypothesis in Exercise 2. One may then expand f̂ (s) in a Taylor
series up to second (or third) derivatives around s = 1 to conclude from the
assumptions on derivatives at 1−, that for s close to one, say on [s0, 1], f̂ (s) < ĝ(s),
since f̂ (1) = ĝ(1), f̂ ′(1) = ĝ′(1), and f̂ ′′(1) < ĝ′′(1). Using monotonicity, one
has f̂ o(n)(s) ≤ ĝo(n)(s) on [s0, 1] for all n ≥ 1, (see Exercise 2(iv)). Since for
s ∈ [0, 1] one has both f̂ o(n)(s) → 1 and ĝo(n)(s) → 1 as n → ∞, there is a
non-negative integer k such that s0 < f̂ o(k)(0), and then one may select m > k such
that f̂ o(k)(s0) ≤ ĝo(m)(0). Thus, for 0 ≤ s ≤ s0 one also has

s0 ≤ f̂ o(k)(0) ≤ f̂ o(k)(s) ≤ f̂ o(k)(s0) ≤ ĝo(m)(0) ≤ ĝo(m)(s).

So the assertion holds on 0 ≤ s ≤ s0 as well. This proves the lemma under the
stronger assumption made at the outset of the proof. For the proof under the stated
hypothesis we refer to Exercise 2. �
Proposition 9.3. Assume f (1) < 1. Let f̂ (s) =∑∞

k=1 f (k)sk . If
∑∞

k=1 k f (k) = 1
and σ 2 =∑∞

k=2 k(k − 1) f (k) <∞, then

1

n
{ 1

1− f̂ o(n)(s)
− 1

1− s
} → σ 2

2
uniformly in s as n →∞.

Proof. Take g(0) = p = 1 − q, g( j) = q2 p j−1, j = 1, . . . . Then ĝ(s) =
p−(2p−1)s

1−ps satisfies the hypothesis of Spitzer’s comparison lemma for p ∈ (0, 1)

selected such that ĝ′′(1−) = 2p
1−p = (1+ ε)σ 2 > σ 2. Thus one has k < m such that

3This result, often attributed to Frank Spitzer, appears in Kesten et al. (1966).
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f̂ o(n+k)(s) ≤ ĝo(n+m)(s), s ∈ [0, 1], n ≥ 0.

Therefore

(1− f̂ o(n+k)(s))−1 − (1− s)−1 ≤ (1− ĝo(n+m)(s))−1 − (1− s)−1

= (n + m)p/q = (n + m)(1+ ε)
σ 2

2
.

On the other hand choosing p such that 2p
1−p = (1 − ε)σ 2 < σ 2, one has for some

k′ < m′ that

(k′ + n)(1− ε)
σ 2

2
≤ (1− f̂ o(m′+n)(s))−1 − (1− s)−1, ∀n ≥ 1.

Since ε > 0 is arbitrary the asserted limit follows. �
Proof of Kolmogorov–Yaglom–Kesten–Ney–Spitzer Theorem. Part (a) now follows
since P(Xn > 0) = 1 − f̂ o(n)(0). The part (b) also follows essentially just as in
the case of the geometrically distributed offspring since, using Laplace transforms
in place of characteristic functions,

E
(
e−t Xn/n|Xn > 0

) = f̂ (n)(e−t/n)− f̂ (n)(0)

1− f̂ (n)(0)

= 1−
[
n
(
1− f̂ (n)(0)

)]−1

[
n
(
1− f̂ (n)(e−t/n)

)]−1
, t ≥ 0.

Letting n → ∞ and using the uniformity of convergence in the preceding
proposition, one calculates from this using L’Hospital’s rule that

lim
n→∞E

(
e−t Xn/n|Xn > 0

) = 1− lim
n→∞

σ 2/2

σ 2/2+ 1
n(1−e−t/n)

= 1− σ 2/2

σ 2/2+ 1/t
= 1

1+ tσ 2

2

.

But this is the Laplace transform of the asserted exponential distribution, and the
result follows by the continuity theorem4 for Laplace transforms.

4Feller (1971), p. 431.
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Exercises

1. Let {Xn : n = 0, 1, . . . } be the simple branching process on S = {0, 1, 2, . . . }
with offspring distribution f such that μ = ∑∞

k=0 k f (k) ≤ 1. Show that all
nonzero states are transient and 0 is an absorbing state and, therefore, recurrent.

2. (Spitzer’s comparison lemma) Complete the steps below to prove Spitzer’s
comparison lemma under the stated hypothesis.

(i) Show lims↑1
f̂ (s)−s
(1−s)2

= 1
2 f̂ ′′(1−).

(ii) Show that 1
2 f̂ ′′(1−) − f̂ (s)−s

(1−s)2
can be expressed as the obviously non-

negative, albeit quite clever, series

1

2
f̂ ′′(1−)− f̂ (s)− s

(1− s)2
=

∞∑

k=3

f (k)
k−1∑

j=2

j−1∑

i=1

(1− si ) ≥ 0(0 ≤ s < 1).

Note that the left side considers the difference between f̂ (s) and the
sum of the first three terms in a formal Taylor expansion about s =
1 divided by (1 − s)2. However, such an expansion is not generally
permitted under the assumed moment conditions. So the right side r(s) :=
∑∞

k=3 f (k)
∑k−1

j=2
∑ j−1

i=1 (1−si ) ≥ 0 is a quite clever series derived from the

(scaled) difference between f̂ (s) and f̂ (1)+ f̂ ′(1−)(s−1)+ 1
2 f̂ ′′(1−)(s−

1)2. [Hint: Use (1−s)
∑k−1

j=1 s j = s−sk , noting EL = 1, E(L−1)(L−2) =
EL(L − 1) = 1

2 f̂ ′′(1−), and rather extensive algebraic simplifications.]

(iii) Show that f̂ (s) = s + f̂ ′′(1−)
2 (1− s)2 − (1− s)2r(s), r(s) ≥ 0, 0 ≤ s < 1.

Similarly for ĝ(s). [ Hint: r(s) ↓ 0 as s ↑ 1.]
(iv) Show that there is an s0 ∈ [0, 1) such that s0 ≤ s ≤ f̂ (s) ≤ ĝ(s) for s0 ≤

s ≤ 1, and hence, using monotonicity and induction, f̂ o(n)(s) ≤ ĝo(n)(s)
on [s0, 1] for all n ≥ 1.

(v) Show that the proof of Spitzer’s comparison lemma can be completed from
here by the same arguments in the proof given there.

3. Under the conditions of Theorem 9.2 show that E(Xn|Xn > 0) ∼ σ 2

2 n as n →
∞. [Hint: E(Xn|Xn > 0)P(Xn > 0) = 1.]

4. Suppose that μ =∑∞
k=0 k f (k) <∞ and σ 2 =∑∞

k=0(k −μ)2 f (k) <∞. Show
that given X0 = 1,

Var Xn =
{
σ 2μn−1(μn − 1)/(μ− 1) if μ �= 1

nσ 2 if μ = 1

5. (a) Provide the induction argument to prove (9.16).
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(b) Suppose that the offspring distribution is given by the (critical) geometric
distribution g(0) = p = 1 − q, g(k) = q2 pk−1, k = 1, 2 . . . where 0 <

p < 1. Check that

(i) ĝ(s) :=
∞∑

k=0

sk g(k) = p − (p − q)s

q + p(1− s)

(ii) ĝo(n)(s) = np + (q − np)s

q + np(1− s)
where the composite function ĝo(n)(s) is

inductively defined ĝo(1)(s) := ĝ(s), ĝo(n+1)(s) := ĝ(ĝo(n)(s)).



Chapter 10
Martingales: Definitions and Examples

Martingale theory is a cornerstone to stochastic analysis and is included in this
book from that perspective. This chapter introduces the theory with examples
and their basic properties. For some readers this chapter may serve as a review.

Statistical independence is long recognized for its dominant role in classic proba-
bility, especially the limit theorems, and is the single notion that has distinguished
probability theory as a distinct mathematical discipline set apart from real analysis
and measure theory. Martingale theory, pioneered by Doob (1953), has taken this
paradigm to the next level, as a more general form of statistical dependence under
which much of classic probability is subsumed. Much of the classical theory of sums
of i.i.d. random variables such as laws of large numbers and central limit theorems
may be viewed more generally as consequences of martingale structure.

If, for example, Z1, Z2, . . . is a sequence of independent integrable mean zero
random variables on (Ω,F , P), then the sequence Xn = Z1 + · · · + Zn , n ≥ 1,
enjoys the seemingly simple but quite more general property,

E(Xn+1|σ(X1, . . . , Xn)) = Xn, n ≥ 1, (10.1)

having far-reaching consequences.
As usual, (Ω,F , P) will continue to denote the underlying probability space

on which all random variables introduced in this chapter are defined, unless stated
otherwise.

Let T be a linearly ordered parameter set, e.g., T = Z+ ≡ {0, 1, 2, . . . },
{1, 2, . . . , N }, [0,∞), or T = [0, 1]. The parameter sets Z+ and N = {1, 2, . . . }
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are interchangeable by a unit shift. A family of σ -fields {Ft : t ∈ T } is said to be a
filtration if (i) Ft ⊂ F∀ t , and (ii) Fs ⊂ Ft ∀ s < t . A family of random variables
{Xt : t ∈ T }, with values in a measurable space (S,S), is said to be {Ft : t ∈ T }-
adapted if Xt is Ft -measurable ∀ t ∈ T .

Definition 10.1. A family {Xt : t ∈ T } of integrable real-valued random variables
is a {Ft : t ∈ T }-submartingale with respect to a filtration {Ft : t ∈ T } if it is
{Ft : t ∈ T }-adapted and

E(Xt | Fs) ≥ Xs a.s. ∀ s < t. (10.2)

If (a.s.) equality holds in (10.2) ∀ s < t , then {Xt : t ∈ T } is a {Ft : t ∈ T }-
martingale. If the inequality in (10.2) is reversed, then {Xt : t ∈ T } is a {Ft : t ∈
T }-supermartingle.

By taking successive conditional expectations, in the case T = Z+ or N the
requirement (10.2) is equivalent to

E(Xn+1 | Fn) ≥ Xn a.s. ∀ n, (10.3)

with equality, if {Xn}∞n=1 is a {Fn}∞n=1-martingale. In particular, taking expectations
one sees that submartingales have monotonically non-decreasing expected values
while martingales have constant expected values.

Convention. Unless otherwise stated we will always assume that T has a smallest
element.

A {Ft : t ∈ T }-martingale (submartingale) is always a {FX
t : t ∈ T }-martingale

(respectively, submartingale) where FX
t := σ {Xs : s ≤ t}, but often the process

{Xt : t ∈ T } arises in a broader context with its martingale property with respect
to a larger filtration. Some of the examples in this chapter illustrate this, as does
Proposition 10.1. Larger filtrations than {FX

t : t ∈ T }may also arise, e.g., by letting
Ft = FX

t ∨A ≡ σ(Gt ∪A), where A (⊂ F) is a σ -field independent of σ(∪tFX
t ).

In our statements the prefix {Ft : t ∈ T }-attached to the term martingale (or
submartingale) is sometimes suppressed when the particular filtration is either clear
from the context or its specification is not essential to the discussion.

If {Zn : n ∈ Z+} is a sequence of integrable {Fn : n ∈ Z+}-adapted
random variables such that E|Z0| < ∞ and E(Zn+1 | Fn) = 0 ∀ n ≥ 0,
then {Zn : n ∈ Z+} is said to be a {Fn : n ∈ Z+}-martingale difference
sequence. In this case Xn := Z0 + Z1 + · · · + Zn (n ≥ 0) is easily seen to
be a {Fn}∞n=1-martingale. Conversely, given a {Fn}∞n=1-martingale {Xn}∞n=1, one
obtains the {Fn}∞n=1-martingale difference sequence Z0 = X0, Zn := Xn − Xn−1
(n ≥ 1). One may similarly define a {Fn}∞n=1-submartingale (or supermartingale-
) difference sequence {Fn}∞n=1 by requiring that {Zn}∞n=1 be {Fn}∞n=1-adapted,
E|Z0| <∞,E(Zn+1 | Fn) ≥ 0 (respectively, ≤ 0) ∀ n ≥ 0.

In gambling language, a {Fn}∞n=1-martingale {Xn}∞n=1 may be thought to rep-
resent a gambler’s fluctuating fortunes, as time progresses, in a fair game. The
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gambler designs the n-th play based on past information (embodied in Fn−1) and
receives a payoff Zn = Xn − Xn−1. But no matter what strategy is followed,
E(Zn | Fn−1) = 0, Similarly, a submartingale represents fortunes in a game
favorable to the gambler, while a supermartingale corresponds to an unfair game. In
pedestrian terms the martingale property conveys weather forecasts for which given
the historical weather record, the expected weather tomorrow is the weather you
see today! The following examples are easily verified using familiar properties of
conditional expectation and, therefore, left as exercises.

Remark 10.1. Let {Xn : n ≥ 0} be a square-integrable martingale, and {Zn =
Xn − Xn−1 : n ≥ 1} the corresponding sequence of martingale differences.
The martingale property implies (and is equivalent to) the lack of correlation:
EZnYn−1 = 0, where Yn−1 is any Fn−1-measurable square-integrable random
variable, whereas independence of Zn and Fn−1 means E f (Zn)Yn−1 = E f (Zn) ·
EYn−1 for any f such that E f 2(Zn) <∞, i.e. f (Zn) and Yn−1 are uncorrelated.

Example 1 (Random Walks, Processes with Independent Increments). Let {Zn :
n ∈ Z+} be a sequence of independent random variables satisfying E|Z0| < ∞
and EZn = 0 ∀ n ≥ 1. Then the random walk Sn = Z0 + Z1 + · · · + Zn (n ≥
0) is a {Gn}∞n=1-martingale where Gn = σ {S0, S1, . . . , Sn}, or equivalently Gn =
σ {Z0, Z1, . . . , Zn}, (n ≥ 0). If EZn ≥ 0 ∀ n ≥ 1, then {Sn}∞n=0 is a {Gn}∞n=0-
submartingale. In continuous time, one may similarly consider a process {Xt : t ∈
[0,∞)} with independent increments. If E|X0| <∞ and E(Xt − Xs) = 0 ∀ s < t ,
then {Xt : t ∈ T } is a {Gt : t ∈ T }-martingale with Gt := σ {Xs : s ≤ t}. If
E(Xt − Xs) ≥ 0 ∀ s < t , then {Xt : t ∈ T } is a {Gt : t ∈ T }-submartingale. For
such a process {Xt : t ∈ T } the mean-adjusted process Yt := Xt − EXt (t ≥ 0) is
a {Gt : t ∈ T }-martingale. Compound Poisson processes and Brownian motion are
important examples.

Example 2 (Conditional Expectations). Let X be an integrable random variable
and {Fn : n ∈ N} an arbitrary filtration. Then the sequence

Xn := E(X | Fn) (n ≥ 1) (10.4)

is a {Fn}∞n=1-martingale.

Example 3 (Independent Products). Let {Yn : n ≥ 1} be a sequence of independent
random variables such that E|Y1| < ∞ and EYn = 1 for n ≥ 2. Write Xn =
Y1Y2 . . . Yn , Fn = σ {Y1, . . . ,Yn}. Then {Xn}∞n=1 is a {Fn}∞n=1-martingale.

Example 4 (Critical Branching Processes). Let X0, X1, X2, . . . denote the suc-
cessive generations of a Bienaymé–Galton–Watson Simple Branching process with
mean-one offspring distribution, i.e.,

Xn+1 =
{∑Xn

i=1 L(n+1)
i if Xn ≥ 1

0 if Xn = 0,
(10.5)
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for n = 0, 1, . . . , where {L(n)
i : i, n ≥ 1} is a collection of i.i.d. mean-one

non-negative integer-valued random variables, independent of X0, then {Xn}∞n=1
is a martingale. Similarly in the supercritical and subcritical cases defined by
EL(n) ≥ 1 and EL(n) ≤ 1, respectively, these are examples of supermartingale
and submartingale structure.

Example 5 (Likelihood Ratios from Statistics). Let U1,U2, . . . , be i.i.d. S-valued
observations from a distribution f (u; θ)ν(du), where ν is a measure on a measur-
able space (S,S). Here θ is a parameter. Under a certain hypothesis H0, θ has value
θ0. Under an alternative hypothesis H1, θ has value θ1. The likelihood ratios

Xn :=
n∏

j=1

f (U j ; θ1)/ f (U j ; θ0) (n ≥ 1)

are a.s. finite under H0 and form a {Fn}∞n=1-martingale with Fn := σ {U1,U2, . . . ,

Un}. This is a special case of Example 3 with Y j = f (U j ; θ1)/ f (U j ; θ0) ( j ≥ 1),
since, under H0,

EY j =
∫

f (u; θ1)

f (u; θ0)
f (u; θ0)ν(du) =

∫

f (u; θ1)ν(du) = 1.

Example 6 (Exponential Martingales). Let {Zn}∞n=1 be an {Fn}∞n=1-adapted
sequence. Let Sn = Z1 + · · · + Zn . Assume that for some ξ �= 0, E exp{ξ Zn} <∞
for all n. Define

ϕn(ξ) := E(exp{ξ Zn}|Fn−1), Xn := exp{ξ Sn}
/ n∏

k=1

ϕk(ξ).

Assume Xn , are integrable for all n. Then, noting
∏n+1

k=1 ϕk(ξ) is Fn-measurable,
{Xn}∞n=1 is a {Fn}∞n=1-martingale. The integrability conditions are satisfied if, in
addition to the finiteness of E exp{ξ Zn} for all n, either (i) Zn is bounded for every
n, or (ii) Zn, n ≥ 1, are independent.

Instead of real ξ one may take imaginary iξ and let ψn(ξ) = E(exp{iξ Zn} |
Fn−1). Then Xn := exp{iξ Sn}/∏n

k=1 ψk(ξ) is a complex martingale, i.e., the real
and imaginary parts of Xn are both martingales, provided E|Xn| <∞ ∀ n.

The following proposition provides further important examples of submartin-
gales which arise under transformations of martingales.

Proposition 10.1. (a) If {Xn}∞n=1 is a {Fn}∞n=1-martingale and ϕ(Xn) is a convex
and integrable function of Xn , then {ϕ(Xn)}∞n=1 is a {Fn}∞n=1-submartingale. (b)If
{Xn}∞n=1 is a {Fn}∞n=1-submartingale, ϕ(Xn) a convex increasing and integrable
function of Xn , then {ϕ(Xn)}∞n=1 is a {Fn}∞n=1-submartingale.

Proof. (a) Assume that ϕ is convex and differentiable on an interval I . Then



10 Martingales: Definitions and Examples 127

ϕ(v) ≥ ϕ(u)+ (v − u)ϕ′(u) (u, v ∈ I ), (10.6)

i.e., the tangent line through any point (u, ϕ(u)) on the graph of ϕ lies below the
graph of ϕ. Letting v = Xn+1 and u = E(Xn+1 | Fn), (10.6) becomes

ϕ(Xn+1) ≥ ϕ(E(Xn+1 | Fn))+ (Xn+1 − E(Xn+1 | Fn)) · ϕ′(E(Xn+1 | Fn)).

(10.7)
Now take conditional expectations of both sides, given Fn , to get

E(ϕ(Xn+1) | Fn) ≥ ϕ(E(Xn+1 | Fn)) = ϕ(Xn). (10.8)

If ϕ is not differentiable everywhere on I , then one may replace ϕ′(u) in (10.6) by
the left-hand derivative of ϕ at u.

(b) If {Xn}∞n=1 is a {Fn}∞n=1-submartingale, then instead of the last equality
in (10.8) one gets an inequality, E(ϕ(Xn+1)|Fn) ≥ ϕ(E(Xn+1|Fn)) ≥ ϕ(Xn), since
E(Xn+1|Fn) ≥ Xn and ϕ is increasing. �

As an immediate consequence of the proposition one gets

Corollary 10.2. Suppose {Xt : t ∈ T } is a {Ft : t ∈ T }-submartingale.

a. Then, for every real c, {Yt := max(Xt , c)} is a{Ft : t ∈ T }-submartingale. In
particular, {X+t := max(Xt , 0)} is a {Ft : t ∈ T }-submartingale.

b. If {Xt : t ∈ T } is a {Ft : t ∈ T }-martingale, then {|Xt − c|} is a {Ft : t ∈ T }-
submartingale, for every c ∈ R.

Proposition 10.3 (Discrete Parameter Doob–Meyer Decomposition). Let {Xn}∞n=0
be a {Fn}∞n=0-submartingale. Then Xn ≡ Mn+ An (n ≥ 0) is the sum of a {Fn}∞n=0-
martingale {Mn}∞n=0 and a non-decreasing process {An}∞n=0, with A0 = 0, which
is predictable, i.e., An is Fn−1-measurable ∀ n. Moreover such a decomposition of
{Xn}∞n=0 is unique.

Proof. Write Zn := E(Xn − Xn−1 | Fn−1) (n ≥ 1), An = ∑n
m=1 Zm , A0 = 0.

Then the submartingale property makes {An}∞n=0 non-decreasing and the conditional
expectations make it predictable. Now observe that Mn := Xn − An (n ≥ 0) is a
{Fn}∞n=0-martingale since for each n ≥ 1,

E(Mn|Fn−1) = E(Xn|Fn−1)− An = Zn + Xn−1 − Zn − An−1 = Mn−1.

If Xn = Mn + An = M ′
n + A′n are two such decompositions, then Mn − M ′

n
(= A′n − An) is Fn−1-measurable, implying Mn − M ′

n = E[Mn − M ′
n | Fn−1] =

Mn−1 − M ′
n−1, which may be inductively iterated to Mn − M ′

n = M0 − M ′
0 = 0.�

Definition 10.2. Suppose that {Xn}∞n=1 is a martingale with EX2
n < ∞. Then the

predictable part An in the Doob–Meyer decomposition of the submartingale {X2
n} is

called the quadratic variation of {Xn}∞n=1 and denoted An = 〈Xn〉.
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Example 7 (Random Walk Revisited). Let Sn = Z1 + · · · + Zn (n ≥ 1) with
Z j ’s independent mean zero random variables, EZ2

j = σ 2
j < ∞. Then Sn is a

martingale and S2
n −

∑n
j=1 σ

2
j is a martingale. Since

∑n
j=1 σ

2
j is non-decreasing

non-negative process, this is the quadratic variation of Sn . The special form of
〈Sn〉 =∑n

j=1 σ
2
j , n ≥ 1, in this case is due to the independence of the summands.

The next result is useful in proving L1-convergence and in other contexts. To
state it define a martingale or a submartingale {Xt : t ∈ T } to be closed on the right,
or right-closed, if T has a maximum, i.e., a largest element b. In particular, taking
Y = Xb ∈ L1, one has Xt = E(Y |Ft ), t ∈ T, if {Xt : t ∈ T } is such a right-closed
martingale.

Proposition 10.4.

a. If {Xt : t ∈ T } is a right-closed {Ft : t ∈ T }-submartingale, then {max(Xt , c) :
t ∈ T } is uniformly integrable for every c ∈ R.

b. A right-closed {Ft : t ∈ T }-martingale is uniformly integrable.

Proof. (a) Since max(Xt , c) = c + max(Xt − c, 0) = c + (Xt − c)+, it is enough
to prove the uniform integrability of the submartingale {Yt := (Xt − c)+}. Let tR

denote the largest element of T . Then the inequalities

∫

[Yt>λ]
Yt d P ≤

∫

[Yt>λ]
YtR d P, P(Yt > λ) ≤ E(Yt )

λ
≤ E(YtR )

λ
(10.9)

prove that {Yt : t ∈ T } is uniformly integrable.
(b) If {Xt : t ∈ T } is a martingale, {|Xt | : t ∈ T } is a non-negative right-closed

submartingale, and (a) applies with c = 0. �
It may be shown that the criterion for uniform integrability given above is optimal

(i.e., essentially necessary) in the sense that if {Xt : t ∈ T } is a uniformly
integrable martingale (or, submartingale), then it is closeable; that is, there exists an
integrable Y which may be used as the last element (to the right) of the martingale
(submartingale); see Example 2.

Proposition 10.5. If a {Fn}-martingale {Xn} converges in L1 to a random variable
X , then the martingale is closed by X .

Proof. Fix ε > 0 and m. Let nε ≥ m such that ||Xn− X ||1 < ε for all n ≥ nε . Then
||Xm − E(X |Fm)||1 = ||E(Xnε |Fm)− E(X |Fm)||1 ≤ ||Xnε − X || < ε. �
Remark 10.2. It follows from Proposition 10.5 and Theorem 12.2 of a forthcoming
chapter that a uniformly integrable martingale converges almost surely and in L1 to
a random variable X . Hence a martingale is closeable if and only if it is uniformly
integrable.

Among the most remarkable consequences of Doob’s martingale theory is the
control over extremes in terms of moments as illustrated by the following.
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Theorem 10.6 (Doob’s Maximal Inequality). Let {X1, X2, . . . , Xn} be an {Fk :
1 ≤ k ≤ n}-martingale, or a non-negative submartingale, and E|Xn|p < ∞ for
some p ≥ 1. Then, for all λ > 0, Mn := max{|X1|, . . . , |Xn|} satisfies

P(Mn ≥ λ) ≤ 1

λp

∫

[Mn>λ]
|Xn|pd P ≤ 1

λp
E|Xn|p. (10.10)

Proof. Let A1 = [|X1| ≥ λ], Ak = [|X1| < λ, . . . , |Xk−1| < λ, |Xk | ≥ λ] (2 ≤
k ≤ n). Then Ak ∈ Fk and [Ak : 1 ≤ k ≤ n] is a (disjoint) partition of [Mn ≥ λ].
Therefore,

P(Mn ≥ λ) =
n∑

k=1

P(Ak) ≤
n∑

k=1

1

λp
E(1Ak |Xk |p) ≤

n∑

k=1

1

λp
E(1Ak |Xn|p)

= 1

λp

∫

[Mn≥λ]
|Xn|pd P ≤ E|Xn|p

λp
.

�
One may note that Kolmogorov’s classic maximal inequality for mean zero

random walks having square-integrable increments is an easy consequence of
Doob’s maximal inequality, (Exercise 7).

Corollary 10.7. Let {X1, X2, . . . , Xn} be an {Fk : 1 ≤ k ≤ n}-martingale
or nonnegative submartingale such that E|Xn|p < ∞ for some p ≥ 2, and
Mn = max{|X1|, . . . , |Xn|}. Then EM p

n ≤ pq
E|Xn|p, where q is the conjugate

to p, 1
p + 1

q = 1.

Proof. A standard application of the Fubini–Tonelli theorem provides the second
moment formula

EM p
n = p

∫ ∞

0
x p−1 P(Mn > x)dx .

Noting that p − 1 ≥ 1 to first apply the Doob maximal inequality (10.10), one then
makes another application of the Fubini–Tonelli theorem, and finally the Hölder
inequality, noting pq − q = p for the conjugacy 1

p + 1
q = 1, to obtain

EM p
n ≤ p

∫ ∞

0
E

(
|Xn|p−11[Mn≥x]

)
dx = pE

(
|Xn|p−1 Mn

)

≤ p(E|Xn|(p−1)q)
1
q (EM p

n )
1
p .

Divide both sides by (E|Mn|p)
1
p and use monotonicity of x → x

1
q , x ≥ 0, to

complete the proof. �
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A so-called L p-maximal inequality (p > 1), or maximal moment inequality,
was also obtained by Doob with a smaller constant q p ≤ pq when p ≥ 2, using a
somewhat more clever estimation than in the above proof as follows.

Theorem 10.8 (Doob’s L p-Maximal Inequality). Let {X1, X2, . . . , Xn} be an {Fk :
1 ≤ k ≤ n}-martingale, or a non-negative submartingale, and let Mn =
max{|X1|, . . . , |Xn|}. Then

1. EMn ≤ e
e−1

(
1+ E|Xn| log+ |Xn|

)
.

2. If E|Xn|p < ∞ for some p > 1, then EM p
n ≤ q p

E|Xn|p, where q is the
conjugate exponent defined by 1

q + 1
p = 1, i.e., q = p

p−1 .

Proof. For any non-decreasing function F1 on [0,∞) with F1(0) = 0, one may
define a corresponding Lebesgue–Stieltjes measure μ1(dy). Use the integration by
parts formula1 for a Lebesgue–Stieltjes integral to get

EF1(Mn) =
∫

[0,∞)

P(Mn ≥ y)F1(dy)

≤
∫

[0,∞)

[1

y

∫

[Mn≥y]
|Xn|d P

]
F1(dy)

=
∫

Ω

|Xn|
(
∫

[0,Mn ]
1

y
F1(dy)

)
d P, (10.11)

where the inequality follows from Theorem 10.6 (with p = 1). For the first part,
consider the function F1(y) = y1[1,∞)(y). Then y − 1 ≤ F1(y), and one gets

E(Mn − 1) ≤ EF1(Mn) ≤
∫

Ω

∣
∣Xn|

(
∫

[1,max{1,Mn}]
1

y
dy

)
d P

=
∫

Ω

|Xn| log(max{1, Mn})d P

=
∫

[Mn≥1]
|Xn| log Mnd P. (10.12)

Now use the inequality (proved in the remark below)

a log b ≤ a log+ a + b

e
, a, b ≥ 0, (10.13)

to further arrive at

EMn ≤ 1+ E|Xn| log+ |Xn| + EMn

e
. (10.14)

1See BCPT, Proposition 1.4, p. 10.



10 Martingales: Definitions and Examples 131

This establishes the inequality for the case p = 1. For p > 1 take F1(y) = y p.
Then

EM p
n ≤ E

(|Xn|
∫

[0,Mn ]
py p−2dy

)

= E
(|Xn| p

p − 1
M p−1

n
)

≤ p

p − 1
(E|Xn|p)

1
p (EM (p−1)q

n )
1
q

= q(E|Xn|p)
1
p (EM p

n )
1
q . (10.15)

The bound for p > 1 now follows by dividing by (EM p
n )

1
q and a little algebra. �

Remark 10.3. To prove the inequality (10.13) it is sufficient to consider the case
1 < a < b, since it obviously holds otherwise. In this case it may be expressed as

log b ≤ log a + b

ae
,

or

log
b

a
≤ b

ae
.

But this follows from the fact that f (x) = log x
x , x > 1, has a maximum value 1

e .

Corollary 10.9. Let {Xt : t ∈ [0, T ]} be a right-continuous non-negative {Ft }-
submartingale with E|XT |p <∞ for some p ≥ 1. Then MT := sup{Xs : 0 ≤ s ≤
T } is FT -measurable and, for all λ > 0,

P(MT > λ) ≤ 1

λp

∫

[MT>λ]
X p

T d P ≤ 1

λp
EX p

T . (10.16)

Proof. Consider the non-negative submartingale {X0, . . . , XT i2−n , . . . , XT }, for
each n = 1, 2, . . . , and let Mn := max{XiT 2−n : 0 ≤ i ≤ 2n}. For λ > 0, [Mn >

λ] ↑ [MT > λ] as n ↑ ∞. In particular, MT is FT -measurable. By Theorem 10.6,

P(Mn > λ) ≤ 1

λp

∫

[Mn>λ]
X p

T d P ≤ 1

λp
EX p

T .

Letting n ↑ ∞, (10.16) is obtained using Proposition 10.4. �
The final notion to be introduced in this chapter is that of a martingale reversed

in time. First consider a finite filtration F1 ⊂ F2 ⊂ · · · ⊂ Fm and a {Fn :
n = 1, 2, . . . ,m} martingale {Xn : n = 1, 2, . . . ,m}. Then denote the reversed
sequence by R1 := Fm , R2 := Fm−1, . . . ,Rm = F1, and Y1 := Xm , Y2 :=
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Xm−1, . . . ,Ym := X1. Then {Yn : n = 1, 2, . . . ,m} is called a {Rn : 1 ≤ n ≤ m}-
reverse martingale, in the sense that (i) {Rn}∞n=1 is a decreasing sequence of
σ -fields, (ii) Yn is Rn-measurable ∀ n, and (iii) E(Yn | Fn+1) = Yn+1 ∀ n. More
generally, {Yn}n≥1 is called a {Rn}n≥1-reverse martingale if (i)–(iii) hold for a finite
or an infinite sequence of indices {1, 2, . . . ,m} or N = {1, 2, . . . }. In particular
an infinite sequence {Yn}∞n=1 is a reverse martingale if and only if the reversal in
time of every finite segment of it (for example, reversal of the random variables
Y j ,Y j+1, . . . ,Y j+k and σ -fields R j ,R j+1, . . . ,R j+k , say) is a martingale.

Example 8 (Conditional Expectations Revisited). Let X be integrable and {Rn :
n ∈ N} a decreasing sequence of sub σ -fields of F . Then Yn := E(X | Rn) (n ∈ N)
is a {Rn : n ∈ N}-reverse martingale.

Exercises

1. Let f be a real-valued step function on [0,∞) (into R) : f (t) = f (ti ) for ti <
t ≤ ti+1 (i = 0, 1, 2, . . . ) where 0 = t0 < t1 < t2 < · · · . Let {Bt : t ≥ 0} be a
standard Brownian motion and define the stochastic integral Xt ≡

∫ t
0 f (s)d Bs =

∑m−1
i=0 f (ti )(Bti+1 − Bti )+ f (tm)(Bt − Btm ) for t ∈ (tm, tm+1].

(a) Show that {Xt : 0 ≤ t < ∞} is a {Ft : 0 ≤ t < ∞}-martingale with
Ft := σ {Bs : 0 ≤ s ≤ t} (t ≥ 0), and

(b) the {Ft : 0 ≤ t < ∞}-submartingale {X2
t : t ≥ 0} has the Doob–

Meyer decomposition: X2
t = Mt + At , where At = ∫ t

0 f 2(s)ds =
∑m−1

i=0 f 2(ti )(ti+1 − ti ) + f 2(tm)(t − tm) for t ∈ (tm, tm+1] A0 = 0, and
Mt = X2

t − At (t ≥ 0) is a {Ft : 0 ≤ t <∞}-martingale.
(c) Extend (a), (b) to the case of a (random) nonanticipative locally bounded step

function, i.e., f (ti ) is Fti -measurable ∀ i and | f (t)| ≤ CT for 0 ≤ t ≤ T ,
and CT are nonrandom constants for all 0 < t <∞.

2. (Exponential Martingale) Let {Bt : t ≥ 0} be a standard one-dimensional
Brownian motion starting at zero, Ft := σ {Bs : 0 ≤ s ≤ t}.
(a) Show that for each pair x , ξ ∈ R, Xt := exp{x + ξ Bt − (ξ2/2)t} (t ≥ 0) is

a {Ft : 0 ≤ t <∞}-martingale.
(b) For the stochastic integrals in Exercise 1, prove that Xt := exp{x +∫ t

0 f (s)d Bs − 1
2

∫ t
0 f 2(s)ds} (t ≥ 0) is a {Ft : 0 ≤ t <∞}-martingale.

3. (Likelihood Ratios) Let P0, P1 be two probability measures on (Ω,F) and
{Fn : n ∈ N} a filtration. Let f 0

n , f 1
n be the densities of P0, P1, respectively, on

Fn with respect to a measure νn (e.g., νn is the restriction of P0 + P1 on Fn).
Show that { f 1

n / f 0
n : n ≥ 1} is a {Fn}∞n=1-martingale under P0.

(For example, Pi may be the distribution of a stochastic process {Yn : n ≥ 1}
under the hypothesis Hi (i = 0, 1) and Fn := σ {Y1, . . . ,Yn}, n ≥ 1.)
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4. (a) Show that the sum of two {Fn}∞n=1-martingales (or submartingales) is a
{Fn}∞n=1-martingale (resp., submartingales),

(b) Give an example to show that the sum of a {Fn}∞n=1-martingale and a
{Gn}∞n=1-martingale, with Gn ⊂ Fn ∀ n, is not, in general, a {Fn}∞n=1-
martingale. [Hint: A {Gn}∞n=1-martingale is not necessarily a {Fn}∞n=1-
martingale].

5. (Exchangeable Martingale Differences) Let {Qθ : θ ∈ Φ} be a family of
probability measures on (R1,B1) such that

∫
x Qθ (dx) = 0 for each θ . Suppose

Φ is a Borel subset of Rk , and π a probability measure on (Φ,B(Φ)). Consider
an experiment in which a value of θ is chosen at random according to π(dθ) and
then, conditionally given θ , an i.i.d. sequence {Zθ,n} is chosen having common
distribution Qθ .

(a) Show that {Zθ,n : n ≥ 1} is an exchangeable sequence, i.e., its distribution
is invariant under any permutation of the indices n.

(b) Show that {Xn := ∑n
1 Zθ, j , n ≥ 1} is a {Fn}∞n=1-martingale, where Fn =

σ {θ , Zθ,1, . . . , Zθ,n).

6. Let {Xn}∞n=1 be a {Fn}∞n=1-supermartingale. Prove that if ϕ is concave and
increasing on the range of Xn (n ≥ 1), and ϕ(Xn) is integrable, then {ϕ(Xn)}∞n=1
is a {Fn}∞n=1-supermartingale.

7. Suppose that Sn = X1+ · · ·+ Xn, n ≥ 1, where X1, X2, . . . are i.i.d. with mean
zero and finite variance. Use Doob’s maximal inequality to prove Kolmogorov’s

maximal inequality P(max1≤ j≤n |S j | ≥ λ) ≤ E|Sn |2
λ2 , λ > 0.



Chapter 11
Optional Stopping of (Sub)Martingales

The development of martingale theory is continued for discrete time mar-
tingales with a focus on the use of stopping times in their analysis. An
application to the ruin problem in insurance is included as an application.

In this chapter we consider discrete parameter processes. Extensions to the con-
tinuous parameter martingales and submartingales are given in Chapter 13. Since
every martingale is a submartingale and versions of some theorems apply to both,
we sometimes refer to (sub)martingales to include both, possibly with equalities
replaced by inequalities.

Recall that a random variable τ with values in Z+ ∪ {∞} is a {Fn}∞n=1-stopping
time with respect to a filtration {Fn}∞n=1 if [τ ≤ n] ∈ Fn for all n ∈ Z+. Since Fn

are increasing, τ is a {Fn}∞n=1-stopping time if and only if [τ = n] ∈ Fn for all
n ∈ Z+. Informally, τ is a {Fn}∞n=1-stopping time if whether or not to stop at time n
depends only on the past and present information as embodied in Fn .

Events depending only on times up to a stopping time τ comprise the so-called
pre-τ σ -field, defined more precisely as follows.

Definition 11.1. Let τ be a {Fn}∞n=1-stopping time. The pre-τσ -field Fτ comprises
all F ∈ F satisfying F ∩ [τ ≤ n] ∈ Fn for every n = 0, 1, 2, . . . .

It is clear from this definition, by taking F = [τ ≤ m] (m ∈ Z+), that
τ is Fτ -measurable. To get an intuitive feeling for Fτ , consider a sequence of
random variables {Xn}∞n=1 with values in some measurable space (S,S), and let
τ be {Fn}∞n=1-stopping time with Fn := σ {X0, X1, . . . , Xn}. One may check in this
case that Fτ is generated by the stopped process {Xτ∧n : n = 0, 1, 2, · · · }, which is
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the process {Xn}∞n=1 observed up to time τ . In other words (Exercise 1),

Fτ = σ {Xτ∧n : n = 0, 1, 2, · · · } . (11.1)

More generally, for a {Fn}∞n=1-adapted process {Xn}∞n=1 (with values in some
measurable space (S,S)), one has, for every {Fn}∞n=1-stopping time τ , the relation
(Exercise 1)

Fτ ⊃ σ {Xτ∧n : n = 0, 1, 2, . . . }. (11.2)

Also, if τ1 ≤ τ2 are two {Fn}∞n=1-stopping times, it is simple to check from
Definition 11.1 that (Exercise 2)

Fτ1 ⊂ Fτ2 . (11.3)

In the case τ < ∞ a.s., we will often write Xτ for Xτ1[τ<∞], which is easily
seen to be Fτ -measurable (Exercise 2).

Theorem 11.1 (Optional Stopping Theorem). Let τ1 ≤ τ2 be two a.s. finite
{Fn}∞n=1-stopping times and {Xn}∞n=1 a {Fn}∞n=1-submartingale. Assume that (i)
E|Xτi | <∞ (i = 1, 2), and (ii) limm→∞ E|Xm1[τ2>m]| = 0. Then

E
(
Xτ2 | Fτ1

) ≥ Xτ1 a.s., and EXτ2 ≥ E Xτ1 . (11.4)

In the case {Xn}∞n=1 is a {Fn}∞n=1-martingale, the inequalities in (11.4) become
equalities.

We first prove a simple lemma.

Lemma 1. Let τ1 ≤ τ2 be two a.s. finite {Fn}∞n=1-stopping times and {Xn}∞n=1 a
{Fn}∞n=1-submartingale. Then conditions (i) and (ii) are equivalent to

Xτi∧m −→ Xτi in L1 as m →∞ (i = 1, 2). (11.5)

Proof. Assume (i), (ii). Then E|Xτ2∧m − Xτ2 | = E|(Xm − Xτ2)1[τ2>m]| ≤
E|Xm1[τ2>m]| + E|Xτ21[τ2>m]| → 0 as m → ∞, by (i) and (ii). Also, E|Xτ1∧m −
Xτ1 | = E|(Xm − Xτ1)1[τ1>m]| ≤ E|Xm1[τ1>m]| +E|Xτ11[τ1>m]| ≤ E|Xm1[τ2>m] +
E|Xτ11[τ1>m]| → 0 as m →∞. Conversely, suppose (11.5) holds, which obviously
implies (i). As to (ii),

E|Xm1[τ2>m]| = E|(Xτ2∧m − Xτ2)1[τ2>m] + Xτ21[τ2>m]| −→ 0

by (11.5) and (i). �
Proof of Theorem 11.1. First assume τ1 and τ2 are bounded a.s., i.e., τ2 ≤ m a.s.
for some integer m. Fix F ∈ Fτ1 and an integer j , 0 ≤ j ≤ m. Then, writing
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Z j = X j − X j−1 ( j ≥ 1) and Xr = X j + Z j+1 + · · · + Zr for j > r , one has

EXτ21F∩[τ1= j] = EX j1[τ2= j1F∩[τ1= j]

+
m∑

r= j+1

E(X j + Z j+1 + · · · + Zr )1[τ2=r ]1F∩[τ1= j] (11.6)

= E
(
X j1[τ2≥ j] + Z j+11[τ2≥ j+1] + · · · + Zm1[τ2≥m]

)
1F∩[τ1= j].

Since [τ2 ≥ r ] = [τ2 ≤ r − 1]c ∈ Fr−1, and E(Zr |Fr−1) ≥ 0 for a {Fn}∞n=1-
submartingale, we get

EZr1[τ2≥r ]1F∩[τ1= j] = E1[τ2≥r ]1F∩[τ1= j]E(Zr |Fr−1) ≥ 0. (11.7)

Using (11.7) in (11.6), and noting that [τ2 ≥ r ] ∩ [τ1 = j] = [τ1 = j] a.s., one
obtains

EXτ21F∩[τ1= j] ≥ EX j1[τ2≥ j]1F∩[τ1= j] = EXτ11[τ2≥ j]1F∩[τ1= j]
= EXτ11F∩[τ1= j]. (11.8)

Now sum over j to get the desired result

EXτ21F ≥ EXτ11F for all F ∈ Fτ1 . (11.9)

For a {Fn}∞n=1-martingale {Xn}∞n=1, E(Zr |Fr−1) = 0 a.s. for every r , so that one
has equalities in (11.7)–(11.9).

For the general case, apply (11.9) to the stopping times τi ∧ m (i = 1, 2), and
note that if F ∈ Fτ1 , then F ∩ [τ1 ≤ m] ∈ Fτ1∧m (see Exercise 2(b)) to get

EXτ2∧m1F∩[τ1≤m] ≥ EXτ1∧m1F∩[τ1≤m] (F ∈ Fτ1). (11.10)

By the lemma, it now follows, letting m →∞ in (11.10), that EXτ21F ≥ EXτ11F

(F ∈ Fτ1 ), with equality if {Xn}∞n=1 is a martingale. �
Corollary 11.2. Let {Xn}∞n=1 be a {Fn}∞n=1-submartingale, and suppose τ1 ≤ τ2
are two {Fn}∞n=1-stopping times. If τ2 is bounded a.s., then the conclusions of
Theorem 11.1 hold.

The technical conditions (i) and (ii) of Theorem 11.1 can also be verified under
the hypothesis of the following version of the result.

Corollary 11.3. Let {Xn}∞n=1 be a {Fn}∞n=1-submartingale, and suppose τ1 ≤ τ2 are
two a.s. finite {Fn}∞n=1-stopping times. Assume that the sequence Zn := Xn− Xn−1
satisfies the two conditions: (a) there exist constants cn such that E(|Zn| | Fn−1) ≤
cn a.s. on [τ2 ≥ n] (n = 1, 2, . . . ) and (b) E(c1+ c2+ · · · + cτ2)1[τ2≥1] <∞. Then
the conclusions of Theorem 11.1 hold.
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Proof. Assumption (i) of Theorem 11.1 follows from the relations

E|Xτ2 | ≤ E|X0| + E

(
τ2∑

r=1

|Zr |1[τ2≥1]

)

,

E

[(
τ2∑

r=1

|Zr |1[τ2≥1]

)]

=
∞∑

n=1

E

[
n∑

r=1

|Zr |1[τ2=n]

]

=
∞∑

r=1

E|Zr |1[τ2≥r ] =
∞∑

r=1

E
[
1[τ2≥r ]E(|Zr | | Fr−1)

]

≤
∞∑

r=1

E
[
1[τ2≥r ]cr

] = E
(
c1 + c2 + · · · + cτ2

)
1[τ2≥1] <∞,

where we have used the fact [τ2 ≤ r ] = [τ2 ≤ r − 1]c ∈ Fr−1.
To verify assumption (ii) of Theorem 11.1, note that for all k < n,

E|Xm |1[τ2≥m] ≤ E (|X0| + |Z1| + · · · + |Zk |) 1[τ2≥m] +
m∑

r=k+1

E|Zr |1[τ2≥r ]

≤ E (|X0| + |Z1| + · · · + |Zk |) 1[τ2≥m] + E

⎛

⎝
m∑

r=k+1

cr1[τ2≥r ]

⎞

⎠ .

Hence, for each k, noting that in the second sum [τ2 ≥ r ] implies [τ2 ≥ k + 1],

lim sup
m→∞

E|Xm |1[τ2≥m] ≤ E

∞∑

r=k+1

cr1[τ2≥r ] ≤ E(c1 + · · · + cτ2)1[τ2≥k+1],

which goes to zero as k →∞. �
It may be noted that if {Xn}∞n=1 is a {Fn}∞n=1-supermartingale, then {−Xn}∞n=1 is

a {Fn}∞n=1-submartingale, and vice versa. Hence Theorem 11.1 and Corollaries 11.2
and 11.3 apply to supermartingales with the inequality in (11.4) reversed.

The following proposition and its corollary are often useful for verifying the
hypothesis of Theorem 11.1 in examples.

Proposition 11.4. Let {Zn : n ∈ N} be real-valued random variables such that for
some ε > 0, δ > 0, one has

P(Zn+1 > ε | Gn) ≥ δ, a.s. ∀ n = 0, 1, 2, . . .
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or

P(Zn+1 < −ε | Gn) ≥ δ a.s. ∀ n = 0, 1, 2, . . . , (11.11)

where Gn = σ {Z1, . . . , Zn} (n ≥ 1), G0 = {∅,Ω}. Let Sx
n = x + Z1 + · · · + Zn

(n ≥ 1), Sx
0 = x , and let a < x < b. Let τ be the first escape time of {Sx

n }∞n=0 from
(a, b), i.e., τ = inf{n ≥ 1 : Sx

n ∈ (a, b)c}. Then τ <∞ a.s., and

sup
{x :a<x<b}

Eeτ z <∞ for |z| < 1

n0

(

log
1

1− δ0

)

, (11.12)

where, writing [y] for the integer part of y,

n0 =
[

b − a

ε

]

+ 1 δ0 = δn0 . (11.13)

Proof. Suppose the first relation in the proposition holds. Clearly, if Z j > ε∀ j =
1, 2, . . . , n0, then Sx

n0
> b, so that τ ≤ n0. Therefore, P(τ ≤ n0) ≥ P(Z1 >

ε, . . . , Zn0 > ε) ≥ δn0 , by taking successive conditional expectations (given
Gn0−1,Gn0−2, . . . ,G0, in that order). Hence P(τ > n0) ≤ 1−δn0 = 1−δ0. For every
integer k ≥ 2, P(τ > kn0) = P(τ > (k − 1)n0, τ > kn0) = E[1[τ>(k−1)n0]P(τ >
kn0|G(k−1)n0)] ≤ (1 − δ0)P(τ > (k − 1)n0), since, on the set [τ > (k − 1)n0],
P(τ ≤ kn0|G(k−1)n0) ≥ P(Z(k−1)n0+1 > ε, . . . , Zkn0 > ε|G(k−1)n0) ≥ δn0 = δ0.
Hence, by induction, P(τ > kn0) ≤ (1 − δ0)

k . Hence P(τ = ∞) = 0 and, for all
z > 0,

Eezτ =
∞∑

r=1

ezr P(τ = r) ≤
∞∑

k=1

ezkn0

kn0∑

r=(k−1)n0+1

P(τ = r)

≤
∞∑

k=1

ezkn0 P(τ > (k − 1)n0) ≤
∞∑

k=1

ezkn0(1− δ0)
k−1

= ezn0(1− (1− δ0)e
zn0)−1 if ezn0(1− δ0) < 1.

An entirely analogous argument holds if the second relation in the proposition
holds. �
Corollary 11.5 (Stein’s Lemma). Let {Zn : n = 1, 2, · · · } be an i.i.d. sequence such
that P(Z1 = 0) < 1. Let Sn

n = x + Z1+ · · ·+ Zn (n ≥ 1), Sx
0 = x , and a < x < b.

Then the first escape time τ of the random walk from the interval (a, b) has a finite
moment generating function in a neighborhood of 0. In particular, there is a constant
cb > 0 such that P(Sn < b) ≤ e−cbn .
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Proof. Finiteness of the moment generating function is an immediate consequence.
The remaining assertion follows from the bound P(Sn < b) ≤ P(τ > n) and the
estimates given in the proof of Proposition 11.4. �
Example 1 (Wald’s Identities). Consider a general random walk {Sx

n := x + Z1 +
· · · + Zn}∞n=1 as in Corollary 11.5. Assume EZ1 = μ is finite. Then {Sx

n − nμ} is a
{Fn}∞n=1-martingale, where Fn = σ {Z1, . . . , Zn} (n ≥ 1), F0 = {∅,Ω}. Let τ be a
{Fn}∞n=1-stopping time such that Eτ <∞. Then E[|Sx

n − nμ− (Sx
n−1− (n− 1)μ| |

Fn−1] = E[|Zn−μ| | Fn−1] = E|Zn−μ| = c, say, is finite. Hence, the hypothesis
of Corollary 11.3 is satisfied: E(c1+ c2+· · ·+ cτ )1[τ≥1] ≤ Ecτ = cEτ <∞, with
c j ≡ c, τ1 ≡ 0, τ2 = τ . This yields
Wald’s First Identity: If Eτ <∞ and Z1 has a finite mean, then

E(Sx
τ − τμ) = E(Sx

0 ) = x, i.e.,

ESx
τ = x + μEτ. (11.14)

Next write S′0 = 0, S′n = Sx
n − x−nμ = Z1−μ+· · ·+ Zn−μ (n ≥ 1). Assume

σ 2 := Var Z1 <∞. Hence {Xn := (S′n)2 − nσ 2 : n ≥ 0} is a {Fn}∞n=1-martingale.
If τ is a {Fn}∞n=1-stopping time such that (i)′ Eτ <∞, (ii)′ E(S′τ )2 <∞, and (iii)′
E(S′m)21[τ>m] → 0 as m →∞, then, by Theorem 11.1, one obtains EXτ = EX0 =
0. Equivalently,
Wald’s Second Identity: If conditions (i)′–(iii)′ hold, then

E(S′τ )2 = σ 2
Eτ. (11.15)

As a special case, let a < x < b and assume Z1 is bounded a.s., Var Z1 > 0.
Define τ to be the first escape time of {Sx

n : n ≥ 0} from the interval (a, b). By
Corollary 11.5, Eτ < ∞ and (i)′–(iii)′ above are easily verified. Hence (11.14)
and (11.15) both hold.

Example 2 (Symmetric Simple Random Walk: Boundary Distribution and Expected
Hitting Time). Let

τ = min{n : Sn = −a or b}, (11.16)

where a and b are positive integers, and then using Stein’s lemma, one has P(τ <

∞) = 1. Note that |Sτ | ≤ max{a, b}, so that E|Sτ | ≤ max{a, b}. Also, on the set
[τ > m], one has −a < Sm < b, and therefore

|E(Sm1[τ>m])| ≤ max{a, b}E1[τ>m]
= max{a, b}P(τ > m)→ 0 as m →∞. (11.17)

Thus the optional stopping Theorem 11.1 applies with τ1 ≡ 0 ≤ τ = τ2, and
therefore
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0 = ESτ = −a P(τ−a < τb)+ bP(τ−a > τb)

= −a(1− P(τ−a > τb))+ bP(τ−a > τb), (11.18)

which may be solved for P(τ−a > τb) to yield

P(τ−a > τb) = a

a + b
. (11.19)

More generally, starting the random walk at x ∈ (a, b), one has

ψ(x) ≡ Px (τa < τb) = (b − x)/(b − a) a ≤ x ≤ b. (11.20)

Recall that this was obtained from a discrete boundary value equation as Propo-
sition 2.3 by conditioning on S1, and in Chapter 7, Example 1, using the strong
Markov property. Note that the optional stopping of martingales also yields the
expected time to reach the boundary {a, b} from Wald’s second identity (Exercise 4)
as

Exτ = (x − a)(b − x) a ≤ x ≤ b. (11.21)

Example 3 (Asymmetric Simple Random Walk: Boundary Distribution and
Expected Hitting Time). Consider the asymmetric simple random walk starting
at an integer x , i.e., Sn = Sx

n = x + Z1 + · · · + Zn (n ≥ 0) with
P(Zn = +1) = p and P(Zn = −1) = q ≡ 1 − p (0 < p < 1). Write
Xn = (q/p)Sn (n ≥ 0), Fn = σ {Z1, . . . , Zn} (n ≥ 1), F0 = {Ω,∅}. Then
E(Xn+1|Fn) = (q/p)SnE[(q/p)Zn+1 |Fn] = (q/p)SnE(q/p)Zn+1 = (q/p)Sn ,
since E(q/p)Zn+1 = p(q/p) + q(q/p)−1 = q + p = 1. Hence {Xn}∞n=1
is a {Fn}∞n=1-martingale. Now let a and b be two integers, a < x < b, and
τ = inf{n ≥ 0 : Sn ∈ {a, b}}. The hypothesis of Theorem 11.1 holds, so that
EXτ = EX0 = (q/p)x . That is, writing ψ(x) for the probability {Sn}∞n=0 reaches a
before b starting from x ,

(q/p)x = (q/p)aψ(x)+ (q/p)b(1− ψ(x)).

This yields

P({Sx
n } hits a before b) = ψ(x) = (q/p)x − (q/p)b

(q/p)a − (q/p)b
(a < x < b),

(11.22)
which was also derived earlier as Proposition 2.1 (also see derivation by an
application of the strong Markov property in Exercise 4 of Chapter 7). If one now
uses the martingale S′n = Sn − n(p − q) (n ≥ 0), then (11.14) leads to

x + (p − q)Eτ = ES′τ = aψ(x)+ b(1− ψ(x)) = b − (b − a)ψ(x),
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so that

Exτ = b − x

p − q
− (b − a)

p − q
ψ(x), a < x < b, (11.23)

where ψ(x) is as in (11.20).

Example 4 (Gambler’s Ruin). The calculations (11.20)–(11.23) may be viewed in
the context of the gambler’s ruin problem, in which a gambler has an initial capital
of S0 = x dollars, x > 0. At each play the gambler may win 1 dollar with probability
p or lose 1 dollar with probability q = 1− p. The gambler’s objective is to increase
an initial asset to b dollars (b > x) and then quit. The gambler is ruined if all x
dollars are lost, i.e., when the asset is reduced to zero before attaining the objective.
In this case Zn is the gambler’s gain on the n-th play, with P(Zn = +1) = p and
P(Zn = −1) = q, and Sn represents the gambler’s asset, or fortune, after n plays.
The relations (11.13) and (11.22) give the probabilities for the gambler to be ruined
before reaching the goal of increasing the initial assets to b, when p = 1

2 and when
p �= 1

2 , respectively. The relations in (11.20) and (11.23) provide the corresponding
expected durations of the game.

Example 5 (Necessity of Technical Conditions for Stopping). To underscore the
role played by the technical conditions (i) and (ii) of Theorem 11.1, consider again
a simple symmetric random walk starting at x , and let a < x < b. Letting b ↑ ∞
in the expression for ψ(x) in (11.20), one obtains the result that P(τa < ∞) = 1,
where τ j := inf{n ≥ 0 : Sn = y}. Similarly, letting a ↓ −∞, one gets P(τb <

∞) = lima↓−∞(1 − ψ(x)) = 1. In other words, the simple symmetric random
walk is recurrent. But it follows from (11.20) that Eτb = ∞. If one formally applies
Theorem 11.1 with τ1 = 0, τ2 = τb, one arrives at the absurd identity b = x . Note
that condition (i) of Theorem 11.1 holds, but condition (ii) fails to apply. On the
other hand, (11.14) (or (11.4)) does apply to τb for the simple random walk with
1
2 < p < 1. In this case τb < ∞ a.s. (by the SLLN, or by letting a ↓ −∞ in
1 − ψ(x) from (11.22)). One may check the hypothesis of Corollary11.3 in this
case, with cn = E|Z1| + μ = 1 + (p − q) = 2p for all n, and Eτb is shown to be
finite by letting a ↓ −∞ in (11.20) (using the monotone convergence theorem),

Eτb = b − x

p − q
(x < b; p > 1

2 ). (11.24)

Of course, (11.24) is just (11.14) in this case.

The following corollaries of Theorem 11.1 are often referred to as optional
sampling theorems as well.

Corollary 11.6 (Optional Sampling). If {Xn}∞n=1 is a {Fn}∞n=1-martingale or a
submartingale, and τ is a {Fn}∞n=1-stopping time, then {Wn := Xτ∧n} is a {Fn}∞n=1-
martingale or a submartingale, accordingly.
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Proof. First note that Wn := ∑n
m=0 Xm1[τ=m] + Xn1[τ>n] is Fn-measurable. If

{Xn}∞n=1 is a submartingale, apply Theorem 11.1 with τ1 = τ∧n and τ2 = τ∧(n+1)
to get

E (Wn+1|Fn) = E [E(Wn+1|Fτ∧n)|Fn] ≥ E(Wn|Fn) = Wn, (11.25)

with equality in the case {Xn}∞n=1 is a martingale. Note that for the second equality,
we have used the fact Fτ∧n ⊂ Fn (see (11.3)). �
Corollary 11.7 (Optional Sampling). Let {τn}∞n=1 be an increasing sequence of Fn-
stopping times and {Xn}∞n=1 a {Fn}∞n=1-(sub)martingale. If, for each n, τn <∞ a.s.,
E|Xτn | < ∞, and E|Xm1[τn>m]| → 0 as m → ∞, then {Wn := Xτn } is a {Fτn }-
(sub)martingale.

Proof. Take τ1 = τn and τ2 = τn+1 in Theorem 11.1. �
We close this chapter with an application from actuarial mathematics.

Example (Risk, Ruin, and Reinsurance). Insurance risk is a historically important
area for the development of probabilistic theory and methods. The compound
Poisson process provides a basic model in insurance where premiums are collected
at a constant rate c and in the course of time i.i.d. (strictly positive) claim amounts
X1, X2, . . . occur independently of the homogeneous Poisson process N = {N (t) :
t ≥ 0}with intensity parameter λ > 0 that counts the arrivals of claims. In particular,
the inter-arrival times of claims are exponentially distributed with mean λ−1 > 0
in this model. For a company with an initial risk reserve amount U (0) = u, their
capital at time t is then given by

U (t) = u + G(t) := u + ct −
N (t)∑

j=0

X j , t ≥ 0. (11.26)

This model is referred to as the Cramér–Lundberg model in insurance.
The Sparre–Andersen model is a more general model in which one assumes

successive times T1, T2, . . . of claim arrival times such that the inter-arrival times
A j = Tj − Tj−1, j ≥ 1, are i.i.d., not necessarily exponentially distributed. In
addition, one assumes EA1 = λ−1 <∞ (T0 = 0).

Remark 11.1. Applications to hydrology involve dual models for reservoir storage
by a change of signs for the claims and premium rate, in which case c is the
withdrawal rate and X1, X2, . . . are random inputs from rainfall/runoff events,
assumed to occur according to i.i.d. inter-arrival times, independently of the input
amounts. Similarly for charities, the X1, X2, . . . are donations, and c is a spending
rate.

The probability of ruin for the general Sparre–Andersen model is defined by
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ψ(u) = P(
n∑

j=1

X j > u + c
n∑

j=1

A j for some n) = P(
n∑

j=1

Z j > u for some n),

(11.27)
where

Z j = X j − cA j , j = 1, 2, . . . . (11.28)

The common distribution of the i.i.d. Z1, Z2, . . . is assumed to satisfy the Net Profit
Condition (NPC):

(N PC) EZ1 ≡ EX1 − cA1 < 0. (11.29)

Note that if EZ1 is finite and EZ1 ≥ 0, then by the strong law of large numbers
ψ(u) = 1 for all u. To avoid the trivial case ψ(u) = 0 for all u > 0, one also
assumes

P(Z1 > 0) > 0. (11.30)

The ruin probability provides a risk measure amenable to analysis for the Sparre–
Andersen model via martingale optional stopping theory in the case of an infinite
time horizon T = ∞, assuming the so-called light-tailed claim size distribution,
that is, assuming

Eeq X1 <∞ for some q > 0. (11.31)

Under this light-tailed assumption, there exists 0 < h ≤ ∞ such that

0 < m(q) ≡ Eeq Zi <∞ 0 ≤ q < h, lim
q↓h

m(q) = ∞. (11.32)

Proposition 11.8 (Classical Lundberg Inequality for the Sparre–Andersen Model).
Under the above net profit condition (11.29), non-degeneracy (11.30), and light-

tailed claim assumption (11.31) for the Sparre–Andersen model, there is a unique
positive solution to m(q) = 1, denoted q = R > 0. Moreover,

ψ(u) ≤ exp{−Ru}, for all u > 0. (11.33)

Proof. Note that m(0) = 1, m′(0) = EZ1 < 0 (or, m′(0+) < 0 if m(q) = ∞
for all q < 0), m′′(q) = EZ2

1 exp{q Z1} > 0 for all q > 0, and m(q) → ∞
as q ↑ h. Hence m(q) decreases from m(0) = 1 to a minimum at q̃ ∈ (0,∞),
before increasing strictly to infinity as q ↑ h. It follows that there exists a unique
q = R > 0 such that m(R) = 1. To prove (11.33), let τ = inf{n ≥ 1 : Sn > u},
where Sn = Z1 + · · · + Zn (n = 1, 2, . . . ), S0 = 0. Then τ is a stopping time with
respect to the filtration Fn = σ {Zk : k = 1, . . . , n} for n ≥ 1, F0 = {Ω,∅}, and
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ψ(u) = P(τ <∞). (11.34)

Next write Wn = u − Sn(n ≥ 1), W0 = u. Then Un = {exp(−RWn) : n ≥ 0} is a
Fn-martingale. Since m(R) = 1, one has

E(Un+1|Fn) = E(Un exp{RZn+1}|Fn)

= UnE(exp{RZn+1}) = Unm(R) = Un . (11.35)

By the optional sampling theorem, one then has

exp{−Ru} = EU0 = EUτ∧n

≥ E(Uτ∧n1[τ≤n])

= E(Uτ1[τ≤n]) for all n. (11.36)

Noting that Uτ > 1 on the event [τ <∞], it follows from (11.36) that exp{−Ru} ≥
E1[τ≤n] = P(τ ≤ n) for all n. Letting n ↑ ∞, one arrives at (11.33). �
Remark 11.2. It will be shown in Chapter 26 that the exponential rate provided
by (11.33) cannot in general be improved upon. The true asymptotic rate will be
shown to be given by ψ(u) ∼ d exp{−Ru} as u → ∞, for some constant d ≤ 1.
Here ∼ means that the ratio of the two sides converges to one as u →∞.

The parameter R is referred to as an adjustment coefficient. The larger R the
smaller the bound on the risk of ruin for a given initial reserve u. Its use in mitigating
risk can be given through considerations of reinsurance as follows. The purchase
of reinsurance will reduce the company’s profit, and however it can increase the
company’s security as measured by the risk of ruin. Suppose for simplicity that in
the absence of reinsurance, a company has a risk reserve process given by the classic
Cramér–Lundberg model above:

U (t) = u + G(t) = u + ct −
Nt∑

k=0

Xk, t ≥ 0.

A reinsurance policy is defined by a function ρ, which pays ρ(x) on a claim amount
x subject to the feasibility condition 0 ≤ ρ(x) ≤ x , and ρ(x) < x if x > 0. For
example, the familiar excess of loss policy with deductible b is given by ρb(x) =
(x − b)+ = max(x − b, 0), x ≥ 0. On the other hand, the proportionate loss policy
at rate γ ∈ (0, 1] is ρ(γ )(x) = γ x, x ≥ 0. The reinsurance relative security loading
factor ξ = ξ(ρ, cρ) is defined by

1+ ξ(ρ, cρ) = cρ
Eρ(X)

,
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where X is distributed as a claim size random variable, and cρ > 0 denotes the
reinsurance premium rate. The adjusted risk reserve under a reinsurance policy ρ is
given by

Ũ (t) = u + G̃(t), t ≥ 0,

where

G̃(t) = (c − cρ)t −
Nt∑

k=0

(Xk − ρ(Xk)), t ≥ 0. (11.37)

The following result provides a sense in which excess of loss policies are optimal
from the point of view of risk reduction among all feasible reinsurance policies for
the same premiums and relative security loads.

Theorem 11.9 (Optimality of Excess of Loss Reinsurance). Assume the Cramér–
Lundberg model (11.26) for insurance capital. Let Rb denote the adjustment
coefficient on the risk reserve under the excess of loss policy ρb with deductible b.
Then for any other reinsurance policy ρ with risk reserve adjustment coefficient R̃
for equivalent premiums cρ = cρb , and the same relative security loads ξ(ρ, cρ) =
ξ(ρb, cρb ), one has R̃ ≤ Rb.

Proof. The risk reserve process for any policy ρ subject to the conditions of the
theorem has adjustment coefficient given by the positive solution q = R̃ to

λ+ (c − cρ)q = λEeq(X−ρ(X)). (11.38)

To see this note that under the risk reserve process, the effective premium paid by
the insurance company is c − cρ , and the effective size is x − ρ(x). Hence the
function m(q) in Proposition 11.8 becomes E exp{q(X − ρ(X))} − (c − cρ)A} =

λ
λ+(c−cρ)q

Ee−q(x−ρ(x)). Setting this equal to one yields (11.38).
Since the affine linear map q → λ + (c − cρ)q, q ≥ 0, on the left side of this

equation is invariant under ρ under the conditions of the theorem, by monotonicity
of the functions q → λEeq(X−ρ(X)), q ≥ 0, it is sufficient to show Eeq(X−ρ(X)) ≥
Eeq(X−ρb(X)) for q > 0. By convexity of the exponential function, one has the line
of support inequality erq ≥ erq ′ + rerq ′(q − q ′) for r ≥ 0 and non-negative q ′, q.
Thus using feasibility, one has r := x − ρ(x) ≥ 0, and taking q ′ := q x−ρb(x)

x−ρ(x) for
fixed x ≥ 0, one has for q ≥ 0,

exp{q(x − ρ(x))} ≥ exp{q(x − ρb(x))} + q exp{q(x − ρb(x))}(ρb(x)− ρ(x)),
(11.39)

if x − ρ(x) > 0. If x − ρ(x) = 0, then (11.39) is trivial. Observe that by definition
of the excess of loss policy ρb and non-negativity of ρ, one has

x − ρb(x) ≤ b, and x − ρb(x) = b if ρb(x) > ρ(x).
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Thus

exp{q(x − ρ(x))} ≥ exp{q(x − ρb(x))} + qeqb(ρb(x)− ρ(x)), x ≥ 0.

Apply this sample-pointwise to the random variable (function) X , taking expec-
tations and noting that Eρ(X) = Eρb(X) by the relative security loading and
premium constraints. This completes the proof that Eeq(X−ρ(X)) ≥ Eeq(X−ρb(X))

for q ≥ 0, as desired. �
Remark 11.3. An alternative approach to mitigating1 risk of ruin involves invest-
ment of the surplus, i.e., premiums collected minus claims, into a portfolio of
a non-risky bond and a risky investment in stocks as described in Chapter 23.
Also, other efforts in actuarial/financial mathematics to standardize the concept of
“Value at Risk” among international institutions worth mention involve definitions
based on quantiles in the profit/loss distribution (see Exercise 9). If one considers
U (t), 0 ≤ t ≤ T over a time horizon of length T (possibly infinite), then the risk
reserve u = u(r) at a given level of insolvency risk, say r , may be viewed in terms
of a quantile of the distribution of

VT = min
0≤t≤T

(c
N (t)∑

j=1

A j −
N (t)∑

j=0

X j )

via the condition that

P(VT < −u) = r.

More specifically, the (1 − r)-th quantile of the distribution of VT , namely −u =
−u(r), defined by P(VT ≥ −u) = 1 − r , is a form of the Value at Risk over the
horizon T , often denoted V a Rr (T ).

Exercises

1. Let {Xn : n ∈ Z+} be a sequence of measurable functions on (Ω,F) into
(S,S).
(a) Let G = σ {X0, X1, X2, . . . }. If Gn = σ {X0, X1, · · · , Xn} (n ≥ 0), and τ is

a {Gn}∞n=0-stopping time, show that Gτ ≡ {A ∈ G : A ∩ [τ = m] ∈ Gm,m =
0, 1, . . . } = σ {Xτ∧n : n ∈ Z+}.

1For example, see Albrecher et al. (2012) and references therein.
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(b) Let {Fn}∞n=0 be a filtration such that {Xn}∞n=0 is adapted to it, and τ is a
{Fn}∞n=0-stopping time, then show that Fτ ⊃ σ {Xτ∧n : n ∈ Z+}. Give an
example to show that the containment “⊃” may be proper, i.e., strict.

2. (a) If τ1 ≤ τ2 are two {Fn}∞n=1-stopping times, and {Xn}∞n=1 is a {Fn}∞n=1-
adapted sequence of functions with values in a measurable space (S,S),
show that Fτ1 ⊂ Fτ2 .

(b) Show that, with the above notation, Xτ1[τ<∞] is Fτ -measurable for every
{Fn}∞n=1-stopping time τ .

3. Let τ1 and τ2 be {Fn}-stopping times. Show that (i) τ1 ∧ τ2 and τ1 ∨ τ2 are {Fn}-
stopping times. (ii) Show Fτ1 ∩ Fτ2 ⊂ Fτ1∧τ2 . [Hint: If G ∈ Fτ1 ∩ Fτ2 , then
(G ∩ [τ1 ≤ n]) ∪ (G ∩ [τ2 ≤ n]) = G ∩ [τ1 ∧ τ2 ≤ n] ∈ Fn .] (iii) Use (ii) to
show that G ∩ [τi ≤ m] ∈ Fτi (i = 1, 2).

4. Give the details for the calculation of the expected time to reach the bound-
ary (11.21).

5. (Martingale Strategy; Double or Nothing) Suppose a gambler bets 1 dollar in
the first play and quits if a win (one dollar). If a loss then the bet is doubled to
2 dollars, with the same strategy of quit on a win and double bet to 4 dollars on
a loss, etc. Thus the gambler quits after the first win, and bets 2n−1 dollars on
the n-th game if the first n − 1 plays are losses (n = 1, 2, . . . ). Assume that the
outcomes of the plays are independent events, and the probability of winning (for
the gambler) is p in each play.

(a) Show that with probability one, the gambler comes away with an overall gain
of 1 dollar, unless p = 0.

(b) Compute the expected duration of the game.
(c) Let {Zn : n ≥ 1} be an independent sequence with P(Zn = 2n−1) = p and

P(Zn = −2n−1) = q ≡ 1− p (0 < p < 1). Consider the (inhomogeneous)
random walk Sn = Z1+Z2+· · ·+Zn (n ≥ 1), Fn = σ {Z1, . . . , Zn} (n ≥ 1),
and let τ = inf{n ≥ 1 : Zn > 0}. Consider the martingale Xn = Sn − ESn

(n ≥ 1) and τ as defined here. Calculate the distribution of τ .
(d) In (c), calculate E|Xm |1[τ>m] and show that it goes to zero as m →∞ if and

only if p > 1
2 .

6. (Optimal Strategy for Gambler) In Exercise 5 the gambler must have unlimited
assets to cover losses as they may accrue. A more realistic assumption is that the
gambler has an initial capital of x dollars (x > 0), and at no stage of the game she
can bet more than her current asset or capital. Suppose the gambler’s objective is
to increase her initial capital to b (> x) dollars. Suppose 0 < p ≤ 1

2 . A feasible
strategy for the gambler is the specification of the amount Yn , 1 ≤ Yn ≤ b−Sn−1
on the event [Sn−1 > 0], as her bet (using past information if necessary) for the
n-th play. Then her gain Zn , say, on the n-th play is±Yn , so that E(Zn||Fn−1) =
(p − q)Yn ≤ 0 (for the standard filtration with F0 = {Ω,∅}).
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(a) Show that regardless of the (feasible) strategy Sn := x + Z1 + · · · + Zn

(n ≥ 0) is a {Fn}∞n=1-supermartingale, and τ := inf{n ≥ 0 : Sn ∈ {0, b}} is a
{Fn}∞n=1-stopping time.

(b) Show that if

r(x) ≥ pr(x + y)+ qr(x − y),∀x ≥ 1,

where r(x) = Px (τb < τ0), then r(Sn) = PSn (τb < τ0), n = 0, 1, 2, . . . , is
a supermartingale

(c) In a bold strategy,2 she does not bet any more than she needs to reach b
dollars, and she quits the first time she accumulates b dollars or she loses all
her capital. In the case p = 1

2 , prove that the probability that the gambler
reaches her objective is no more than x/b.

(d) Assume p = 1/2. Show that an optimal strategy (for maximizing this
probability) is the timid strategy of betting 1 dollar in each play until the
stopping time τ is reached. [Hint: Note that under the timid strategy, the
capital evolves according to the simple symmetric random walk on [0, b]
with absorbing barriers at 0, b, for which P(τ (1)b < τ

(1)
0 ) = x/b satisfies

the supermartingale inequality above (as an equality). Modify an arbitrary
feasible strategy by adapting the timid strategy from the n-th step forward,
n = 1, 2, . . . . Use the supermartingale property for the timid strategy to
show Ex P

S(2)n
(τ

(n)
b < τ

(n)
0 ) ≤ Px (τ

(1)
b < τ

(1)
0 ). Let n →∞.]

7. Let {Xn : n ≥ 1} be a non-negative {Fn}∞n=1-submartingale and τ an a.s. finite
{Fn}∞n=1-stopping time. Assume EXm1[τ>m] → 0 as m → ∞. Give a direct
proof (without using Theorem 11.1) that EXτ ≥ EX1, with equality for the
martingale case. [Hint: EXτ = limm→∞

∑m
n=1 E[Xn(1[τ>n−1] − 1[τ>n])] ≥

limm→∞[EX1−EXm1[τ>m]] = EX1, with “=” in place of “≥” for martingales.]
8. Show that Theorem 11.1 holds for supermartingales with the inequalities

in (11.4) reversed.
9. Consider the Sparre–Andersen model under the net profit condition and light-

tailed claim assumptions. Give an upper bound on the value at risk V a Rr (∞)

over an infinite time horizon T = ∞ in terms of the risk level r and the
adjustment coefficient R.

2For a detailed analysis of the bold strategy, see the interesting article Billingsley (1983).



Chapter 12
The Upcrossings Inequality and
(Sub)Martingale Convergence

Doob’s intriguing and delicate upcrossing inequality is derived in this chapter.
One of its consequences is the (sub) martingale convergence theorem, which
in turn leads to a proof of the strong law of large numbers and a derivation
of DeFinetti’s representation of exchangeable (symmetrically dependent)
sequences of random variables. Other applications include regularity of
sample paths of continuous parameter stochastic processes to be derived in
Chapter 13.

Recall that submartingales {Yn}∞n=1 have monotonically non-decreasing expected
values. Thus, trivially, if the numerical sequence {E|Yn|}∞n=1 is bounded, then
limn→∞ EYn will exist. The remarkable fact to be proven in this chapter is
that submartingales having bounded absolute means (or slightly less), and such
“bounded” martingales and non-negative supermartingales, will a.s. converge to a
finite limit!

Consider a sequence {Yn : n ≥ 1} of real-valued random variables such that Yn is
Fn-measurable for a given filtration {Fn}∞n=1. Let a < b be an arbitrary pair of real
numbers. An upcrossing of the interval (a, b) by {Yn}∞n=1 is a passage to a value≥ b
from an earlier value ≤ a, while a downcrossing of (a, b) is a passage to a value
≤ a from an earlier value ≥ b. It is convenient to look at the corresponding process
{Xn := (Yn − a)+}∞n=1, where (Yn − a)+ = max{(Yn − a), 0}. The upcrossings
of (a, b) by {Yn}∞n=1 are the upcrossings of (0, b − a) by {Xn}∞n=1. The successive
upcrossing times η2k (k = 0, 1, . . . ) of {Xn}∞n=1 are defined by

η0 := 1,

η1 := inf{n ≥ 1 : Xn = 0},
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η2 := inf{n > η1 : Xn ≥ b − a},
η2k+1 := inf{n > η2k : Xn = 0},
η2k+2 := inf{n > η2k+1 : Xn ≥ b − a}, k ≥ 0. (12.1)

Then each ηk is a {Fn}∞n=1-stopping time. Fix a positive integer N and define

τk := ηk ∧ N ≡ min{ηk, N }, (k = 0, 1, . . . ). (12.2)

Then each τk is also a stopping time. Also, τk ≡ N for k ≥ N , so that Xτk = X N

for k ≥ N .
Let UN ≡ UN (a, b) denote the number of upcrossings of (a, b) by {Yn}∞n=1 by

time N , i.e.,

UN (a, b) := sup{k ≥ 0 : η2k ≤ N }, (12.3)

with the convention that the supremum over an empty set of 0. Thus UN is also the
number of upcrossings of (0, b − a) by {Xn}∞n=1 in time N .

Since Xτk = X N for k ≥ N , one may write

X N − X1 =
[N/2]+1∑

k=1

(
Xτ2k−1 − Xτ2k−2

)+
[N/2]+1∑

k=1

(
Xτ2k − Xτ2k−1

)
. (12.4)

To relate (12.4) to the number UN , let ν denote the largest k such that ηk ≤ N , i.e.,
ν is the last time≤ N for an upcrossing or a downcrossing. Notice that UN = [ν/2].
If ν is even, then Xτ2k − Xτ2k−1 ≥ b − a if 2k ≤ ν, and is X N − X N = 0 if 2k > ν.
Now suppose ν is odd. Then Xτ2k − Xτ2k−1 ≥ b − a if 2k − 1 < ν, and is 0 if
2k − 1 > ν, and is Xτ2k − 0 ≥ 0 if 2k − 1 = ν. Hence in every case

[N/2]+1∑

k=1

(
Xτ2k − Xτ2k−1

) ≥ [ν/2](b − a) = UN (b − a). (12.5)

As a consequence,

X N − X1 ≥
[N/2]∑

k=1

(
Xτ2k−1 − Xτ2k−2

)+ (b − a)UN . (12.6)

Observe that (12.6) is true for an arbitrary sequence of random variables (or,
real numbers) {Yn}∞n=1. Assume now that {Yn}∞n=1 is a {Fn}∞n=1-submartingale. Then
{Xn}∞n=1 is a {Fn}∞n=1-submartingale by Proposition 10.1(b). By optional sampling
(Corollary 11.6), {Xτk : k ≥ 1} is a submartingale. Hence EXτk is non-decreasing
in k, so that
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E

⎛

⎝
[N/2]∑

k=1

(
Xτ2k−1 − Xτ2k−2

)
⎞

⎠ ≥ 0. (12.7)

Applying this to (12.6) one obtains the following truly remarkable bound on the
mean number of upcrossings.

Theorem 12.1 (Upcrossing Inequality). Let {Yn}∞n=1 be a {Fn}∞n=1-submartingale.
For each pair a < b the expected number of upcrossings of (a, b) by Y1, . . . ,YN

satisfies the inequality

EUN (a, b) ≤ E(YN − a)+ − E(Y1 − a)+

b − a
≤ EY+N + |a|

b − a
≤ E|YN | + |a|

b − a
.

(12.8)

As an important consequence of this result we get

Theorem 12.2 (Submartingale Convergence Theorem). Let {Yn}∞n=1 be a sub-
martingale such that E(Y+n ) is a bounded sequence. Then {Yn}∞n=1 converges a.s.
to a limit Y∞. If K := supn E|Yn| <∞, then Y∞ is a.s. finite and E|Y∞| ≤ K .

Proof. Let U (a, b) denote the total number of upcrossings of (a, b) by {Yn}∞n=1.
Then 0 ≤ UN (a, b) ↑ U (a, b) as N ↑ ∞. Therefore, by the monotone convergence
theorem

EU (a, b) = lim
N↑∞EUN (a, b) ≤ sup

N

EY+N + |a|
b − a

<∞. (12.9)

In particular U (a, b) <∞ almost surely, so that

P (lim inf Yn < a < b < lim sup Yn) = 0. (12.10)

Since this holds for every pair a, b = a + 1
m with rational number a, and a positive

integer m, and the set of all such pairs is countable, one must have lim inf Yn =
lim sup Yn almost surely. Let Y∞ denote the a.s. limit. By Fatou’s Lemma, E|Y∞| ≤
limE|Yn|. �

Theorem 12.2 and Doob’s L p-maximal inequalities imply the following powerful
result.

Theorem 12.3 (L p-Convergence of Submartingales). Let{Xn : n ≥ 1} be a {Fn}-
submartingale. (a) If supn E|Xn| log+ |Xn| < ∞, then Xn converges a.s. and in L1

to a random variable X . (b) If supn E|Xn|p <∞ for some p > 1, then Xn converges
a.s. and in L p to a random variable X .

Proof. In both (a) and (b), almost sure convergence follows from Theorem 12.2.
Doob’s maximal inequalities (Theorem 10.8) imply that in (a) {Xn} is uniformly
integrable and in (b) |Xn|p is uniformly integrable (Exercise 8). �
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An immediate consequence of Theorem 12.2 is

Corollary 12.4. (a) A non-negative martingale {Yn}∞n=1 converges almost surely to
a finite limit Y∞. Also, EY∞ ≤ EY1. (b) A non-negative supermartingale {Yn}∞n=1
converges almost surely to a finite limit Y∞.

Proof. (a) For a non-negative martingale {Yn}∞n=1, supn E|Yn| = supn EYn = EY1.
So the assertion follows from Theorem 12.2. (b) For a non-negative supermartingale
{Yn}∞n=1, {−Yn}∞n=1 is a submartingale bounded above by zero, i.e., (−Yn)

+ = 0
and therefore, supn E(−Yn)

+ = 0. Hence, again by Theorem 12.2, limn Yn =
− limn(−Yn) ≥ 0 exists and is almost surely finite. �

It follows from the Corollary that the martingales {Yn := ∏n
j=1 X j } converge

almost surely to an integrable random variable Y∞, if {Xn}∞n=1 is an independent
non-negative sequence with EXn = 1 for all n. In the case {Xn}∞n=1 is i.i.d. and
P(X1 = 1) < 1, it is an interesting fact that the limit of {Yn}∞n=1 is 0 a.s., as shown
by the following corollary.

Corollary 12.5. Let {Xn}∞n=1 be an i.i.d. sequence of non-negative random variables
with EX1 = 1. Then {Yn := ∏n

j=1 X j } converges almost surely to 0, provided
P(X1 = 1) < 1.

Proof. First assume P(X1 = 0) > 0. Then P(Xn = 0 for some n) = 1−P(Xn > 0
for all n) = 1, since P(X j > 0 for 1 ≤ j ≤ n) = (P(X1 > 0))n . But if Xm = 0,
then Yn = 0 for all n ≥ m. Therefore, P(Yn = 0 for all sufficiently large n) = 1.

Assume now P(X1 > 0) = 1. Consider the i.i.d. sequence {log Xn}∞n=1. Since
x → log x is concave one has, by Jensen’s inequality, E log X1 ≤ logEX1 = 0.
Since P(X1 = 1) < 1, log X1 is not degenerate (i.e., not almost surely a constant).
Hence the Jensen inequality is strict. Therefore, E log Xn < 0. By the strong law of
large numbers,

1

n
log Yn = 1

n

n∑

j=1

log X j
a.s.−→ E log X1 < 0. (12.11)

Therefore, log Yn →−∞, a.s., and Yn → 0 a.s. �
Another application of Corollary 12.4 to a multiplicative process is the following.

Example 1 (Bienaymé–Galton–Watson Branching Process). Consider a simple
branching process in which the total number Xn of individuals in the n-th generation
evolves as follows. Each individual is replaced by a random number of offspring in
the next generation. The sequence of random numbers L(n)

i , i, n ≥ 1, of offspring
produced in this manner throughout the generations are i.i.d. with common
probability mass function (pmf ) f . Assume 0 < μ := ∑∞

k=0 k f (k) < ∞. Let
Fn := σ {X1, . . . , Xn}. Then {Xn}∞n=1 is a Markov chain and

E (Xn+1 | Fn) = E (Xn+1 | σ(Xn)) = μXn . (12.12)
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Define

Yn := μ−n Xn . (12.13)

Then

E (Yn+1 | Fn) = μ−(n+1)μXn = μ−n Xn = Yn . (12.14)

Hence {Yn}∞n=1 is a non-negative martingale, which converges a.s. to a finite
integrable limit Y∞, EY∞ ≤ EY1 = 1. One may then express the size Xn of the
n-th generation as

Xn = μnYn = μn(Y∞ + o(1)), (12.15)

where o(1) → 0 a.s. as n → ∞. Suppose μ < 1. Then (12.15) implies that
Xn → 0 a.s. (and exponentially fast). Since Xn is integer valued, this means that,
with probability one, Xn is 0 for all sufficiently large n, so that Y∞ = 0 a.s. That is,
in case μ < 1, extinction is certain (and the population size declines exponentially
fast). As already shown, extinction is certain in the critical case μ = 1. As a
consequence of this and (12.15), one may deduce that Y∞ = 0 (a.s.) for the case
μ ≤ 1. To complete this picture consider the following natural property associated
with the evolution of Bienaymé–Galton–Watson branching processes.

Definition 12.1. A property of Bienaymé–Galton–Watson trees is said to be inher-
ited if every finite tree has the property, and all subtrees rooted at descendants of the
root of a tree having this property also have this property.

Importantly, extinction is an inherited property.

Theorem 12.6 (Zero-One Law for Inherited Properties). The event that a
Bienaymé–Galton–Watson process with non-degenerate offspring distribution
has a particular inherited property has conditional probability zero or one given
nonextinction.

Proof. Let G denote the event that a Bienaymé–Galton–Watson tree with k offspring
of a single progenitor root possesses a given inherited property, and let G1, . . . ,Gk

be the events that the respective descendent subtrees of the root have this property.
Then, for arbitrary k,

P(G|L(1)
1 = k) ≤ P(G1 ∩ G2 ∩ · · · ∩ Gk |L(1)

1 = k) = P(G)k .

In particular, denoting the probability generating function (pgf ) of the offspring by
ϕ, one has

P(G) ≤ E(P(G))L(1)1 = ϕ(P(G)).
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Let ρ denote the extinction probability. Then, as has been previously shown, ρ is
a fixed point of ϕ. Since every finite tree has the inherited property, i.e., under
inheritance, extinction implies G, one has ϕ(ρ) = ρ ≤ P(G). Recall that ϕ is
strictly convex, non-decreasing, and has at most two fixed points ρ and 1 in [0, 1].
Moreover, ϕ(x) ≥ x, 0 ≤ x ≤ ρ and ϕ(x) ≤ x, ρ ≤ x ≤ 1, with ϕ(1) = 1.
Thus, P(G) ∈ {ρ, 1}, so that if P(G) = ρ < 1, then P(G|nonextinction) =
P(G)−ρ

1−ρ = 0. On the other hand, if P(G) = 1, then P(G|nonextinction) =
1− P(Gc|nonextinction) = 1− 0 = 1. �
Since [Y∞ = 0] is an inherited property one immediately arrives at the following.

Corollary 12.7. For any finite, positive mean offspring μ, one has conditionally on
nonextinction Y∞ = 0 or Y∞ > 0 almost surely, i.e., P(Y∞ = 0) is either zero or ρ.

Radon–Nikodym derivatives provide an essential “change of measure” tool of
both probability theory and analysis. The next application of martingale conver-
gence provides a natural conceptual interpretation (see Exercise 7).

Corollary 12.8 (Lebesgue Decomposition). Let m, q be finite measures on a mea-
surable space (S,F) and assume that m is non-trivial (i.e., not identically zero) and
q is normalized to a probability. Suppose that Fn, n ≥ 1 is a filtration such that
m << q on each Fn with Radon–Nikodym derivative Qn = dm/dq on Fn . Define

Q∞(x) = lim sup
n→∞

Qn(x), x ∈ S.

Then

m(A) =
∫

A
Q∞(x)q(dx)+ m(A ∩ [Q∞ = ∞]), A ∈ F .

In particular

a. m << q ⇐⇒ Q∞ <∞ m − a.e. ⇐⇒ Eq Q∞ = m(S)
b. m ⊥ q ⇐⇒ Q∞ = ∞ m − a.e. ⇐⇒ Eq Q∞ = 0.

Proof. First observe that the sequence {Qn : n ≥ 1} defined on the probability
space (S,F , q) is a non-negative martingale with respect to the filtration Fn, n ≥ 1
since for any bounded Fn-measurable, and hence Fn+1-measurable, function G on
S one has
∫

S
GE(Qn+1|Fn)dq = Eq(G Qn+1) =

∫

S
G Qn+1dq =

∫

S
G Qndq =

∫

S
Gdm.

That is, E(Qn+1|Fn) is a version of dm/dq on Fn and hence agrees with Qn . Thus
it follows from the martingale convergence theorem that Q∞ = limn Qn < ∞ a.s.
with respect to q. Assume without loss of generality that m is a probability; else
replace m by its normalization to a probability in what follows. A standard trick to
find measures λn to dominate (in the sense of absolute continuity) both mn := m|Fn
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and qn := q|Fn is to define

λn = mn + qn

2
and λ = m + q

2
.

Then mn << λn, and qn << λn on Fn and λn coincides with the restriction of λ to
Fn . Now

Mn = dmn

dλn
and Rn = dqn

dλn

define non-negative bounded martingales {Mn : n ≥ 1} and {Rn : n ≥ 1} on the
probability space (S,F , λ), which may be checked along the same lines as above
(Exercise 6). Thus the following limits exist a.s. with respect to λ:

M∞ := lim
n→∞ Mn R∞ := lim

n
Rn .

Moreover one has (Exercise 6)

M∞ = dm

dλ
R∞ = dq

dλ
.

Thus Qn = Mn/Rn and therefore Q∞ = M∞/R∞ a.s. with respect to λ. Note that
λ([M∞ = R∞ = 0]) = 0 since Mn + Rn = 2λ for all n. Thus we have arrived at

m(A) =
∫

A

dm

dλ
dλ =

∫

A
M∞dλ

=
∫

A

M∞
R∞

1[R∞>0]R∞dλ+
∫

A
M∞1[R∞=0]dλ

=
∫

A
Q∞dq +

∫

A
1[R∞=0]dm.

Now notice that since Qn Rn = Mn for each n, 1[R∞=0] = 1[Q∞=∞] a.s. with
respect to m, completing the proof of the decomposition. The various equivalent
conditions for absolute continuity and/or mutual singularity can be directly read off
of this representation (Exercise 6). �
Corollary 12.9. Let Y be an integrable random variable on a probability space
(Ω,F , P) and {Fn}∞n=1 an increasing sequence of sub-σ -fields of F . Then {Yn :=
E(Y | Fn)}∞n=1 is a {Fn}∞n=1-martingale and {Yn}∞n=1 converges almost surely, and
in L1, to Y∞ := E(Y | F∞), where F∞ =∨

n Fn ≡ σ {∪∞n=1Fn}.
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Proof. The martingale property is clear. Also, by Jensen’s inequality applied to the
function x → |x | one obtains |Yn| ≡ |E(Y | Fn)| ≤ E(|Y | | Fn), so that

E|Yn| ≤ E|Y | for all n. (12.16)

Therefore, by Theorem 12.2, {Yn}∞n=1 converges almost surely to an integrable
random variable Y∞, say. In order to show that {Yn}∞n=1 converges to Y∞ in L1,
we need to prove that {Yn}∞n=1 is uniformly integrable. This follows from

∫

[|Yn |>λ]
|Yn|d P =

∫

[|Yn |>λ]
|E(Y | Fn)|d P ≤

∫

[|Yn |>λ]
E(|Y | | Fn)d P

=
∫

[|Yn |>λ]
|Y |d P.

Now

sup
n

P(|Yn| > λ) ≤ sup
n

E|Yn|/λ = E[|E(Y | Fn)|] ≤ E[E(|Y | | Fn)]/λ = E|Y |/λ.
(12.17)

Therefore,
∫
[|Yn |>λ] |Yn|d P → 0 (Exercise). Now, for any given m, EY1A = EYn1A

for all A ∈ Fm provided n ≥ m. Letting n →∞, one gets EY1A = EY∞1A for all
A ∈ Fm . Since m is arbitrary, the last equality holds for all A ∈ ∪∞m=1Fm . �

Another useful convergence result related to martingales is

Proposition 12.10 (Convergence of Reverse Martingales). Let {Fn : n =
0, 1, 2, . . . } be a decreasing sequence of σ -fields ⊂ F , and let {Yn : n = 0, 1, . . . }
be a {Fn}∞n=1-reverse martingale, i.e., E(Yn | Fn+1) = Yn+1 (n ≥ 0).

a. Then {Yn}∞n=1 converges in L1 to E(Y0 | F∞) where F∞ = ∩∞n=0Fn .
b. In particular, given Y0 integrable, E(Y0 | Fn) converges in L1 to E(Y0 | F∞).
c. The convergence in (a), (b) is a.s.

Proof.

a. Note that Yn = E(Y0 | Fn) (n ≥ 1). This is easy to check directly, or use the fact
that {Yn,Yn−1, . . . ,Y0} is a martingale with respect to the increasing family of σ -
fields {Fn,Fn−1, . . . ,F0}. It follows that {Yn : n ∈ Z+} is uniformly integrable,
using (12.17) (with Y0 in place of Y ) and Chebyshev’s inequality exactly as in
the proof of Corollary 12.9. Hence there exists a subsequence Yn1 ,Yn2 , · · · (n1 <

n2 < · · · ) which converges in L1 to some random variable Y∞, say. Clearly, Y∞
is F∞-measurable. Also, by the definition of conditional expectations,

∫

A
Y0d P =

∫

A
Ynd P ∀ n ≥ 1, ∀ A ∈ F∞, (12.18)
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since A ∈ Fn for all n. Letting n → ∞ through the subsequence {n j } one gets∫
A Y0d P = ∫

A Y∞d P for every A ∈ F∞, proving that E(Y0 | F∞) = Y∞. Since
the limit Y∞ is independent of the subsequence n1 < n2 < · · · , the proof is
complete.

b. Given Y0 integrable, {E(Y0 | Fn) : n ≥ 0} (with F0 = F , say) is a {Fn}∞n=1-
reverse martingale, so that (a) applies.

c. The proof of a.s. convergence is almost the same as in the case of a submartingale
(Theorem 12.2). If UN = UN (a, b) is the number of upcrossings of (a, b) by the
martingale {Y−N ,Y−N+1, . . . ,Y1}, then EUN (a, b) ≤ (E|Y1| + |a|)/(b − a),
by (12.8) (relabeling the random variables Y−N as Y1, . . . ,Y1 as YN ). The rest of
the proof is the same as that of Theorem 12.2.

�
Corollary 12.11 (Strong Law of Large Numbers—SLLN). Let {Zn : n ≥ 1} be an
i.i.d. sequence of integrable random variables. Then Sn/n → EZ1 a.s. and in L1 as
n →∞, where Sn = Z1 + · · · + Zn (n ≥ 1).

Proof. Let Fn := σ {Sm : m ≥ n} (n = 1, 2, · · · ). Observe that the distribution
of the sequence (Z1, Z2, . . . , Zn, Sn, Sn+1, . . . ) is the same as that of the sequence
(Zπ(1), Zπ(2), . . . , Zπ(n), Sn, Sn+1, . . . ) for every permutation π(1), . . . , π(n) of
1, 2, . . . , n. In particular,

E(Z j | Fn) = E(Z1 | Fn) (1 ≤ j ≤ n). (12.19)

Averaging (12.19) over j = 1, . . . , n, one has

E

(
Sn

n

∣
∣Fn

)

= E(Z1 | Fn) (n ≥ 1). (12.20)

But E(Sn/n | Fn) = Sn/n. Now apply Proposition 12.10 to the sequence Yn :=
E(Z1 | Fn) (n ≥ 1) to get Sn/n converges a.s. and in L1 to E(Z1 | F∞) where
F∞ = ∩n≥1Fn . However, since lim inf Sn/n is measurable with respect to the tail
σ -field of {Zn : n ≥ 1}, it follows from Kolmogorov’s zero-one law that the limit is
a constant a.s., namely, EZ1. �

To conclude this chapter we consider an application of martingales to arbitrary
“symmetrically dependent,” or exchangeable sequences.

Example (Exchangeable Sequences of Random Variables and DeFinetti’s Theo-
rem). Recall that a S-valued sequence of random variables {Xn : n ≥ 1} is
exchangeable if its distribution is permutation–invariant, i.e., for any given n ∈ N

the distribution of (X1, X2, . . . , Xn) is the same as that of (Xπ(1), Xπ(2), . . . , Xπ(n))

for all permutations (π(1), . . . , π(n)) of (1, 2, . . . , n). One way to construct such
sequences is to first pick at random a probability measure Qθ on (S,S) from a
family {Qθ : θ ∈ Θ}, with the random parameter having a distribution μ(dθ) on
a measurable space (Θ,A). Given θ , let X1, X2, . . . , be an i.i.d. sequence with
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common distribution Qθ . The (unconditional) distribution of {Xn : n ≥ 1} is then
permutation invariant. Remarkably, the following theorem asserts that essentially all
exchangeable sequences are of this form.

Theorem 12.12 (DeFinetti’s Theorem). Let {Xn : n ≥ 1} be exchangeable
with values in (S,S). Define Fn to be the σ -field of events invariant under the
permutation of X1, . . . , Xn , F∞ = ∩∞n=1Fn .

a. (SLLN) if g is a measurable real-valued function on S such that E|g(X1)| <∞,
then (1/n)

∑n
j=1 g(X j ) converges a.s. and in L1 to E(g(X1) | F∞).

b. {Xn : n ≥ 1} is i.i.d., conditionally given F∞, i.e., for arbitrary k and bounded
measure g1, . . . , gm on S one has, a.s.,

E

[
m∏

i=1

gi (X j ) | F∞
]

=
m∏

i=1

E[gi (X j ) | F∞] =
m∏

i=1

E[gi (X1) | F∞].
(12.21)

c. If S is Polish, S = B(S), then the distribution γ of (X1, X2, . . . , . . . ) is a mixture
of product measures Q∞ on (S∞,S⊗∞), i.e.,

γ (A) =
∫

P(S)
Q∞(A)ν(d Q) (A ∈ S⊗∞), (12.22)

where Q → Q∞(A) is, for each A ∈ S⊗∞, a measurable map on the space
P(S) of all probability measures (on S) endowed with the Borel σ -field under
the weak topology.

Proof.

a. The {Fn}∞n=1-reverse martingale E[g(X1) | Fn] converges a.s. and in L1 to
E[g(X1) | F∞], by Proposition 12.10. By symmetry, E[g(X1) | Fn] =
(1/n)

∑n
j=1 g(X j ), as in the first part of the proof of Corollary 12.11.

b. Fix n ≥ m. For every permutation (π(1), . . . , π(m)) of (1, 2, . . . , n) taken m at
a time, one has

E

[
m∏

i=1

gi (Xi ) | Fn

]

= E

[
m∏

i=1

gi (Xπ(i)) | Fn

]

a.s. (12.23)

The average of the right side over the (n)m := n(n − 1) · · · (n − m + 1)
permutations π , as n →∞, is (Exercise 4)

1

(n)m

m∏

i=1

⎧
⎨

⎩

n∑

j=1

gi (X j )

⎫
⎬

⎭
+ O(nm−1)

(n)m
a.s., (12.24)

which converges a.s. to
∏m

i=1 E[g(X1) | F∞] as n → ∞, by (a). Since the left
side of (12.23) converges a.s. to E[∏m

i=1 gi (Xi ) | F∞], by Proposition 12.10, the
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first and third terms in (12.21) equal. Now use E[gi (X1) | F∞] = E[gi (X j ) |
F∞] a.s., due to exchangeability (e.g., it is true with F∞ replaced by Fn where
n ≥ j ; now let n →∞).

c. Since S is Polish and S its Borel σ -field, given F∞ regular conditional
distributions Q1(ω), say, of X1 and Q1,2,...,m(ω) of (X1, . . . , Xm) exist (m ≥ 1),
and Q1,2,...,m(ω) is the m-fold product probability Q1(ω)×Q1(ω)×· · ·×Q1(ω)

(m ≥ 1), outside a P-null set. Hence a regular conditional distribution Q∞(ω),
say, exists for (X1, X2, . . . ) (given F∞) and it is given by the infinite product
probability Q∞1 (ω), on (S∞,S⊗∞). Since γ (A) = E(Q∞1 (ω)(A)), (12.23)
follows with ω→ Q∞1 (ω) a map on (Ω,F , P) into P(S∞) having distribution
ν, say.

�

Exercises

1. Prove that a non-negative {Fn}∞n=1-supermartingale {Xn : n ∈ N} converges a.s.
to a random variable X∞ satisfying EX∞ ≤ EX1. [Hint: Apply Theorem 12.2,
noting that EXn ≤ EX1 ∀n.]

2. Let Ω = [0, 1), F = B[0, 1), and P = Lebesgue measure on [0, 1]. Suppose f
is integrable on (Ω,F , P).

(a) Suppose 0 = x0 < x1 < · · · < xk = 1 is a partition of [0, 1), and F is
the σ -field on [0, 1] generated by {[xi , xi+1) : i = 0, 1, . . . , k − 1}. Prove
that E( f | F)(x) = fi for x ∈ [xi , xi+1), where fi =

∫
[xi ,xi+1)

, f (x)dx
(i = 0, 1, · · · , k − 1).

(b) Let 0 = x (n)0 < x (n)1 < · · · < x (n)kn
= 1 denote a sequence of partitions

πn = {x (n)0 , . . . , x (n)kn
} such that πn ⊂ πn+1 ∀ n and δn := max{x (n)i+1 −

x (n)i : 0 ≤ i ≤ kn − 1} → 0 as n → ∞. Prove that E( f | Fn) =
∑kn−1

i=0 f (n)i 1[xi ,x
(n)
i+1)

(x) → f (x) a.s. (λ) and in L1 as n → ∞, and
∑kn+1

i=1 f (n)i (x (n)i+1 − x (n)i )→ ∫
[0,1] f (x)dx . Here f (n)i := ∫

[x (n)i ,x (n)i+1)
f (x)dx .

(c) State and prove proper extensions of (a), (b) when λ is replaced by an
arbitrary probability measure on [0, 1).

3. Let {Xn : n ∈ N} be a uniformly integrable {Fn}∞n=1-submartingale.

(a) Show that Xn converges a.s. and in L1 to a random variable X∞, say, and
E(X∞ | Fn) ≥ Xn for all n, a.s.

(b) If, in addition, {Xn}∞n=1 is a {Fn}∞n=1-martingale, show that E(X∞ | Fn) =
Xn a.s. for all n.
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4. Show that

(a) the average of the right side of (12.23) over the (n)m permutations π (of
(1, 2, . . . , n) taken m at a time) is of the form (12.24). [Hint: The number
of terms in the expansion of the product

∏m
i=1{

∑n
j=1 gi (X j )} which have

repeated indices j is of the order O(nm−1).]
(b) Write out this average over (n)m permutations, with the leading term given

in (12.24) followed by terms with repeated indices.

5. Consider an exchangeable sequence of Bernoulli 0− 1 valued random variables
X1, X2, . . . .

(a) Use deFinetti’s theorem to show that there is probability measure ν on
[0, 1] such that for any ε j ∈ {0, 1}, 1 ≤ j ≤ n,

∑n
j=1 ε j = k, P(X1 =

ε1, . . . , Xn = εn) =
∫
[0,1] xk(1− x)n−kν(dx).

(b) Use the Riesz representation theorem to provide an alternative proof to
(i). [Hint: Starting with �(x0) = 1, �(xn) = P(X1 = 1, . . . , Xn =
1), n ≥ 1, construct a well-defined bounded linear functional on C[0, 1]
using Weierstrass approximation and the inclusion-exclusion formula.]

6. In reference to the Lebesgue decomposition Corollary 12.8

(i) Show that {Mn}∞n=1 and {Rn}∞n=1 define non-negative bounded martingales
whose respective limits M∞ and R∞ exist a.s. with respect to λ.

(ii) Show that M∞ = dm/dλ and R∞ = dq/dλ. [Hint: Use dominated
convergence to argue that m(A) = ∫

A M∞dλ on the π -system ∪nFn which
generates F and apply the π − λ-theorem. The argument is the same for
R∞.]

(ii) Prove the asserted equivalent conditions for absolute continuity and mutual
singularity in Corollary 12.8.

7. (Radon–Nikodym Derivatives) This exercise provides a conceptual representa-
tion of Radon–Nikodym derivatives based on the Corollary 12.8. For a given
integer b ≥ 2 consider successive partitions of the unit interval S = [0, 1)
into subintervals Δk,n := [kb−n, (k + 1)b−n), k = 0, 1, . . . bn − 1). Let
Fn = σ(Δk,n : 0 ≤ k ≤ bn − 1. Suppose that μ, ν are two positive finite
measures on the Borel σ -field of S with μ << ν. Define a sequence of piecewise
constant functions on S by the ratios ρn(x) := μ(Δk,n)/ν(Δk,n) for x ∈ Δk,n .
Show that ρ∞ = limn→∞ ρn exists ν-a.e. and dμ/dν = ρ∞.

8. Under the hypothesis of Theorem 12.3(a), show that {Xn} is uniformly integrable.
[Hint: |Xn| ≤ Mn ↑ M almost surely, and by the monotone convergence
theorem, EM ≤ supn E|Xn| log+ |Xn|∞.] Similarly, prove that, under the
hypothesis of Theorem 12.3(b), {|Xn|p} is uniformly integrable. [Hint: Note
|Xn|p ≤ M p for all n, and EM p <∞, by monotone convergence.]



Chapter 13
Continuous Parameter Martingales

In this chapter some of the main theorems for discrete parameter martingales
obtained in previous chapters are extended to continuous parameter martin-
gales. A central point is the use of martingale theory for the regularization of
sample paths of stochastic processes.

The index set T here is an interval contained in {0,∞); most often, T = [0,∞).
T denotes the closure of T in [0,∞], which may be thought of as a one-point
compactification of [0,∞).

Theorem 13.1. Let {Xt : t ∈ T } be a right-continuous non-negative {Ft : t ∈ T }–
submartingale, with E|Xt |p < ∞ for some p ≥ 1. Then Mt := sup{Xs : s ≤ t} is
Ft –measurable (t ∈ T ), and
(a) for all λ > 0,

P(Mt > λ) ≤ 1

λp

∫

[Mt>λ]
X p

t ≤
1

λp
EX p

t ; (13.1)

(b) if E|Xt |p <∞ for some p > 1, then

‖Mt‖p := (EM p
t )

1/p ≤ q‖Xt‖p, (13.2)

where q is the conjugate of p, i.e., (1/p)+ (1/q) = 1.

Proof. (a) Let t1,n < t2,n < · · · < tkn ,n = t be in T , {t j,n : 1 ≤ j ≤ kn} ↑ with
respect to inclusion as n ↑, and ∪∞n=1{t j,n : 1 ≤ j ≤ kn} dense in {s ∈ T : s ≤ t}.
Write Mt,n := max{Xt j,n : 1 ≤ j ≤ kn}. For λ > 0, [Mt,n > λ] ↑ [Mt > λ] as
n ↑ ∞, by right-continuity of {Xs : s ∈ T }. In particular, Mt is Ft –measurable.
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Also, by Theorem 10.6,

P(Mt,n > λ) ≤ 1

λp

∫

[Mt,n>λ]
X p

t d P ≤ 1

λp
EX p

t . (13.3)

Letting n ↑ ∞, one obtains (13.1).
(b) is obtained similarly from Theorem 10.6(b). �
To state the optional stopping and optional sampling theorems we need to define

{Ft : t ∈ T }–stopping times. The intuitive idea of τ as a stopping time strategy is
that to “stop by time t , or not,” according to τ , is determined by the knowledge of
the past up to time t , and does not require “a peek into the future.”

Definition 13.1. Let {Ft : t ∈ T } be a filtration on a probability space (Ω,F , P),
with T a linearly ordered index set to which one may adjoin, if necessary, a point
“∞” as the largest point of T ∪ {∞}. A random variable τ : Ω → T ∪ {∞} is a
{Ft : t ∈ T }-stopping time if [τ ≤ t] ∈ Ft ∀ t ∈ T . If [τ < t] ∈ Ft for all t ∈ T ,
then τ is called an optional time.

Most commonly, T in this definition is N or Z+, or [0,∞), T = [0,C] for 0 <

C <∞, and τ is related to a{Ft : t ∈ T }-adapted process {Xt : t ∈ T }.
Example 1. Let {Xt : t ∈ T } be a {Ft : t ∈ T }-adapted process with values in
a measurable space (S,S), with a linearly ordered index set. (a) If T = N or Z+,
then for every B ∈ S,

τB := inf{t ≥ 0 : Xt ∈ B} (13.4)

is a {Ft : t ∈ T }-stopping time. (b) If T = R+ ≡ [0,∞), S is a metric space S =
B(S), B is closed, and t → Xt is continuous, then τB is a {Ft }t∈T -stopping time
(Exercise 2(i)) (c) If T = R+, S is a topological space, t → Xt is right continuous,
and B is open then [τB < t] ∈ Ft for all t ≥ 0, i.e., τB is an optional time
(Exercise 2(ii)).

Definition 13.2. Let {Ft : t ∈ T } be a filtration on (Ω,F). Suppose that τ is
a {Ft }−stopping time. The pre-τ sigmafield Fτ comprises all A ∈ F such that
A ∩ [τ ≤ t] ∈ Ft for all t ∈ T .

Heuristically, Fτ comprises events determined by information available only up
to time τ. For example, if T is discrete with elements t1 < t2 < · · · , and Ft =
σ(Xs : 0 ≤ s ≤ t) ⊂ F ,∀t, where {Xt : t ∈ T } is a process with values in some
measurable space (S,S), then Fτ = σ(Xτ∧t : t ∈ T ); (Exercise 8). The stochastic
process {Xτ∧t : t ∈ T } is referred to as the stopped process.

The Fτ–measurability of τ is easy to verify. Also if τ1, τ2 are two {Ft : t ∈ T }–
stopping times and τ1 ≤ τ2, then it is simple to check that (Exercise 1)

Fτ1 ⊂ Fτ2 . (13.5)
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Suppose {Xt : t ∈ T } is a {Ft : t ∈ T }–adapted process with values in a measurable
space (S,S), and τ is a {Ft : t ∈ T }–stopping time. Unlike the discrete parameter
case, the joint measurability (t, ω)→ Xt (ω) is needed for many purposes.

Suppose {Xt : t ∈ T } is a {Ft : t ∈ T }-adapted process with values in a
measurable space (S,S), and τ is a {Ft : t ∈ T }-stopping time. For many purposes
the following notion of adapted joint measurability of (t, ω)→ Xt (ω) is important.

Definition 13.3. A stochastic process {Xt : t ∈ T } with values in a measurable
space (S,S) is progressively measurable with respect to {Ft : t ∈ T } if, for each t ∈
T , the map (s, ω)→ Xs(ω) is measurable with respect to the σ−fields B[0, t]⊗Ft

(on [0, t]×Ω) and S (on S). Here B[0, t] is the Borel σ−field on [0, t], B[0, t]⊗Ft

is the usual product σ−field.

Proposition 13.2. (a) Suppose {Xt : t ∈ T } is progressively measurable, and τ is a
stopping time. Then Xτ is Fτ–measurable, i.e., [Xτ ∈ B] ∩ [τ ≤ t] ∈ Ft for each
B ∈ S and each t ∈ T . (b) Suppose S is a metric space and S its Borel σ−field. If
{Xt : t ∈ T } is right-continuous, then it is progressively measurable.

Proof. (a) Fix t ∈ T . On the set Ωt := [τ ≤ t], Xτ is the composition g of the
maps (i) f (ω) = (τ (ω), ω), on Ωt into [0, t] × Ωt , and (ii) g(s, ω) = Xs(ω) on
[0, t] × Ωt into S. Now f is F̃t –measurable on Ωt , where F̃t is the trace σ−field
{A ∩Ωt : A ∈ Ft } on Ωt , and B[0, t] ⊗ F̃t is the σ−field on [0, t] ×Ωt . Next, the
map g(s, ω) = Xs(ω) on [0, t] ×Ω into S is B[0, t] ⊗ Ft –measurable. Therefore,
the restriction of this map to the measurable subset [0, t] ×Ωt is measurable on the
trace σ−field {A ∩ ([0, t] × Ωt ) : A ∈ B[0, t] ⊗ Ft }. Therefore, the composition
Xτ is F̃t –measurable on Ωt , i.e., [Xτ ∈ B] ∩ [τ ≤ t] ∈ F̃t ⊂ Ft . (b) Fix t ∈ T .
Define, for each positive integer n, the stochastic process {X (n)

s : 0 ≤ s ≤ t} by

X (n)
s := X j2−nt for ( j − 1)2−nt ≤ s < j2−nt (1 ≤ j ≤ 2n), X (n)

t = Xt .

(13.6)
Since {(s, ω) : X (n)

s (ω) ∈ B} = ∪2n

j=1([ j − 1)2−nt , j2−nt) × {ω : X j2−n t (ω) ∈
B}) ∪ ({t} × {ω : Xt (ω) ∈ B}) ∈ B[0, t] ⊗ Ft , {X (n)

t : t ≥ 0} is progressively
measurable. Now X (n)

t (ω)→ Xt (ω) for all (t, ω) as n → ∞, in view of the right-
continuity of t → Xt (ω). Hence {Xt : t ∈ T } is progressively measurable. �
Remark 13.1. It is often important to relax the assumption of ‘right-continuity’ of
{Xt : t ∈ T } to “a.s. right-continuity”. To ensure progressive measurability in this
case, it is convenient to take F , Ft to be P–complete, i.e., if P(A) = 0 and B ⊂ A
then B ∈ F and B ∈ Ft ∀ t . Then modify Xt to equal X0 ∀ t on the P-null set
N = {ω : t → Xt (ω) is not right-continuous}. This modified {Xt : t ∈ T },
{Ft : t ∈ T } satisfy the hypothesis of part (b) of Proposition 13.2.

Theorem 13.3 (Optional Stopping). Let {Xt : 0 ≤ t < ∞} be a right-continuous
{Ft : t ∈ T }–submartingale and τ1 ≤ τ2 two a.s. finite {Ft : t ∈ T }–stopping times
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such that Xτi∧m → Xτi in L1 (i = 1, 2), as m →∞ (or, equivalently, E|Xτi | <∞
(i = 1, 2) and E(|Xm |1[τ2>m])→ 0 as m →∞). Then

E
(
Xτ2 | Fτ1

) ≥ Xτ1 a.s., (13.7)

with equality if {Xt : t ∈ T } is a {Ft : t ∈ T }–martingale.

Proof. Define, for each positive integer n, and each i = 0, 1, the stopping time

τ
(n)
i := k

2n
on

[
k − 1

2n
< τi ≤ k

2n

]

(k = 0, 1, . . . ). (13.8)

Then τ (n)i is a {Ft : t ∈ T }–stopping time, τi ≤ τ
(n)
i ≤ τi + 2−n for all n (i = 1, 2).

Since τ (n)i is a stopping time with respect to the discrete parameter family {Fk2−n :
k = 0, 1, 2, . . . }, for each positive integer n, so is τ (n)i ∧m for each positive integer
m, Theorem 11.1 may be applied (or, use Corollary 11.2) to obtain, in the martingale
case,

E

(
X
τ
(n)
2 ∧m

· 1A

)
= E

(
X
τ
(n)
1 ∧m

· 1A

)
(A ∈ Fτ1∧m). (13.9)

Here we have used the fact Fτ1∧m ⊂ F
τ
(n)
1 ∧m

. For each m, we will now show that

{X
τ
(n)
1 ∧m

: n ≥ 1, i = 1, 2} is a uniformly integrable family. Consider for this the

two–element martingale {X
τ
(n)
i ∧m

, Xm}with σ−fields F
τ
(n)
i ∧m

,Fm (Theorem 11.1).

It follows from the submartingale property of {|X
τ
(n)
i ∧m

|, |Xm |} that

E

∣
∣
∣X

τ
(n)
i ∧m

∣
∣
∣ 1[|X

τ
(n)
i ∧m

|>λ] ≤ E|Xm |1[|X
τ
(n)
i
∧m|>λ],

P
(
|X

τ
(n)
i ∧m

| > λ
)
≤ 1

λ
E

∣
∣
∣X

τ
(n)
i ∧m

∣
∣
∣ ≤ 1

λ
E|Xm |, (13.10)

proving the desired uniform integrability. Now, since X
τ
(n)
i ∧m

→ Xτi∧m a.s. as

n → ∞, by right-continuity of {Xt : t ∈ T }, this convergence is also in L1.
Therefore (13.9) yields

E
(
Xτ2∧m · 1A

) = E
(
Xτ1∧m · 1A

)
A ∈ Fτ1∧m . (13.11)

By hypothesis, Xτi∧m → Xτi in L1 as m → ∞. Hence taking A = B ∩ [τ1 ≤ m]
with B ∈ Fτ1 (so that A ∈ Fτ1∧m), one obtains from (13.11), in the limit as m →
∞,

EXτ21B = EXτ11B ∀ B ∈ Fτ1 , (13.12)

completing the proof for the martingale case.
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For the case of a submartingale {Xt : t ∈ T }, consider for each c ∈ R, and given
n and m, the two-component submartingale {X1,n := max(X

τ
(n)
1 ∧m

, c), X2,n :=
max(X

τ
(n)
2 ∧m

, c)} (Theorem 11.1 and Corollary10.2). Then the equality in (13.9)

becomes an inequality “≥” with Xi,n in place of X
τ
(n)
i ∧m

(i = 1, 2). Since {Xi,n :
n ≥ 1, i = 1, 2} is uniformly integrable (Look at the two–element martingale
{Xi,n, Xm := max(Xm,C )} for each i = 1, 2.), one obtains in place of (13.11) the
inequality EX21A ≥ EX11A with Xi := max(Xτi∧m, c) (i = 1, 2), A = B ∩ [τ1 ≤
m], B ∈ Fτ1 . Letting m → ∞, and by hypothesis, one obtains EZ21B ≥ EZ11B

where Zi := max(Xτi , c), ∀ B ∈ Fτ1 . Now let c ↓ −∞ and use the monotone
convergence theorem to get the desired relation EXτ21B ≥ EXτ11B ∀ B ∈ Fτ1 . �

The equivalence of the conditions (a) Xτi∧m → Xτi in L1 as m →∞ (i = 1, 2),
and (b) E|Xτi | < ∞ (i = 1, 2) and E|Xm |1[τ2>m] → 0 as m → ∞, is proved in
exactly the same manner as the lemma following the statement of Theorem 11.1.

Definition 13.4. A stochastic process {Yt : t ∈ T } is said to be a modification or
version of a stochastic process {Xt : t ∈ T } if P(Yt = Xt ) = 1 ∀ t , and {Yt : t ∈ T }
is an indistinguishable version of {Xt : t ∈ T } if P(Yt = Xt ∀ t) = 1.

Note that if {Yt : t ∈ T } is a version of {Xt : t ∈ T }, then the finite-dimensional
distributions of {Xt : t ∈ T } and {Yt : t ∈ T } are the same.

Remark 13.2. It follows from Remark 13.1 that if F , Ft are P–complete and
{Xt : t ∈ T } is an a.s. right-continuous {Ft : t ∈ T }–(sub)martingale, then
it has an indistinguishable right-continuous version which is a {Ft : t ∈ T }–
(sub)martingale, and Theorem 13.3 applies to this version. But, in fact, the proof
of the theorem remains valid, if one replaces “right-continuous” by “a.s. right-
continuous” in the statement, provided Xτi 1[τ2<∞] is assumed Fτi –measurable
(i = 1, 2). Indeed, (13.12) (with inequality for the submartingale case) holds even
without this assumption of Fτi –measurability of Xτi .

Corollary 13.4. If {Xt : 0 ≤ t < ∞} is a right-continuous {Ft : t ∈ T }–
(sub)martingale, and τ is a {Ft : t ∈ T }–stopping time, then {Xτ∧t : t ≥ 0} is
a {Ft : t ∈ T }–(sub)martingale.

Again, as indicated in Remark 13.2 above, one may assume a.s. right-continuity
in the corollary provided Xτ∧t is Ft –measurable ∀t .

Example 2 (Hitting by Brownian Motion of a Two-Point Boundary). Let {Bx
t : t ≥

0} be a one dimension standard Brownian motion starting at x , and let c < x < d.
Let τ denote the stopping time, τ = inf{t ≥ 0 : Bx

t = c or d}. Then EBx
τ = EBx

0 =
x , or writing ψ(x) := P({Bx

t }t≥0 reaches d before c), dψ(x) + c(1 − ψ(x)) = x ,
or,

ψ(x) = x − c

d − c
c < x < d. (13.13)
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Applying Theorem 13.3 to the martingale Xt := (Bx
t − x)2 − t , one gets EXτ = 0,

or (d − x)2ψ(x) + (x − c)2(1 − ψ(x)) = Eτ , so that Eτ = [(d − x)2 − (x −
c)2]ψ(x)+ (x − c)2, or

Eτ = (d − x)(x − c). (13.14)

Consider now a Brownian motion {Y x
t : t ≥ 0} with nonzero drift μ and diffusion

coefficient σ 2 > 0, starting at x . Then {Y x
t − tμ : t ≥ 0} is a martingale, so that

E(Y x
τ − μτ) = x , i.e., dψ1(x)+ c(1− ψ1(x))− μEτ = x , or,

(d − c)ψ1(x)− μEτ = x − c, (13.15)

where ψ1(x) = P(Y x
τ = d), i.e., {Y x

t : t ≥ 0} reaches d before c. There are
two unknowns, ψ1 and Eτ in (13.15), so we need one more relation to solve

for them. Consider the exponential martingale Zt := exp{ξ(Y x
t − tμ) − ξ2σ 2

2 t}
(t ≥ 1) (See Exercise 11(i)). Z0 = eξ x , so that eξ x = EZτ = E exp{ξ(d − τμ) −
ξ2σ 2 τ/2}1[Y x

τ =d] + E[exp{ξ(c − τμ) − ξ2σ 2 τ/2}1[Y x
τ =d]]. Take ξ �= 0 such that

the coefficient of τ in the exponent is zero, i.e., ξμ+ ξ2 σ 2/2 = 0, or ξ = −2μ/σ 2.
Then Theorem 13.3 yields

e−2μx/σ 2 = exp{ξd}ψ1(x)+ exp{ξc}(1− ψ1(x))

= ψ1(x)

[

exp

{

−2μd

σ 2

}

− exp

{

−2μc

σ 2

}]

= exp

{

+2μc

σ 2

}

,

or,

ψ1(x) = exp{−2μx/σ 2} − exp{−2μc/σ 2}
exp{− 2μd

σ 2 } − exp{− 2μc
σ 2 }

, (13.16)

one may use this to compute Eτ ,

Eτ = (d − c)ψ1(x)− (x − c)

μ
. (13.17)

Checking the hypotheses of Theorem 13.3 for the validity of the relations (13.13)–
(13.17) are left to Exercise 11(ii).

The following property of Brownian motion is basic to the theory of stochastic
differential equations (SDE). It is included here as an application of the use of the
maximal inequality in the analysis of Brownian motion sample path structure (also
see Proposition 6.6).

Theorem 13.5. (a) Outside a P–null set, {Bt : t ≥ 0} is of unbounded variation on
every non-degenerate interval, and (b) for every t > 0,
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max
1≤N≤2n

∣
∣
∣
∣
∣

N∑

i=1

(
Bi2−n t − B(i−1)2−n t

)2 − N2−nt

∣
∣
∣
∣
∣
−→ 0, a.s. as n →∞.

(13.18)

Proof. (a) Let Vn := ∑2n

i=1 |Bi2−n − B(i−1)2−n |, (n = 1, 2, · · · ). Then Vn+1 ≥ Vn

for all n. Since Bi2−n − B(i−1)2−n (i = 1, 2, · · · , 2n) are i.i.d. N (0, 2−n), one has
EVn = 2n

E|B2−n − B0| = 2n/2
E|B1| as E|B2−n | = E|B1/2n/2|. Therefore by

Chebyshev’s inequality, for all M > 0, 2n/2 > M ,

P(Vn ≤ M) ≡ P(Vn − EVn ≤ M − 2n/2
E|B1|)

≤ P(|Vn − EVn| ≥ 2n/2
E|B1| − M) ≤ 1/(2n/2

E|B1| − M)2,

which goes to zero as n → ∞. Therefore, P(Vn > M) → 1 as n → ∞,
i.e., Vn ↑ ∞ a.s. Applying the same argument to dyadic intervals [a, b] (instead
of [0, 1]), one gets the desired result. (b) Since, for each n, the finite sequence
YN := ∑N

i=1(Bi2−n t − B(i−1)2−n t )
2 − N2−nt (N = 1, 2, . . . , 2n) is a martingale,

Doob’s maximal inequality with p = 2 yields (see Theorem 10.6, or Kolmogorov’s
maximal inequality Chapter 10, Exercise 7).

P

(

max
1≤N≤2n

|YN | > n2−n/2
)

≤ ct2

n2
(c := E(B2

1 − 1)2 = 2). (13.19)

Now apply the Borel–Cantelli lemma to get (13.18). �
Remark 13.3. If one defines the quadratic variation v([s, t], f ) of a function f on
[s, t], s < t , to be the limit, if it exists, of

vn([s, t], f ) :=
2n
∑

i=1

[
f (s + i2−n(t − s))− f (s + (i − 1)2−n(t − s))

]2

as n → ∞, then Theorem 13.5(b) implies, in particular, that for every s < t the
standard Brownian motion has a finite quadratic variation t− s on the interval [s, t],
outside a P–null set. This fact leads to the following distinctive symbolism often
employed in the calculus of stochastic differential equations:

(d Bt )
2 = dt a.s. (13.20)

It follows from Theorem 13.5(b) that outside a P-null set, the p-th variation of
Brownian motion on any interval [s, t], s < t , defined by the limit (if it exists)

vn,p ([s, t], {Bt : t ≥ 0}) :=
2n
∑

i=1

∣
∣Bs+i2−n(t−s) − Bs+(i−1)2−n(t−s)

∣
∣p (13.21)



170 13 Continuous Parameter Martingales

is, outside a P–null set, infinite if p < 2 and zero if p > 2 (Exercise 9).

We next show that the crucial assumption of right-continuity of a submartingale
required in this chapter is satisfied by an appropriate modification of the submartin-
gale.

Definition 13.5. Let {Ft : t ∈ T } be a filtration on an interval T . Define Ft+ :=
∩s>tFs (with Ft+ := Ft if t is a right end point), Ft− = σ(∩s<tFs) (with Ft− :=
Ft if t is a left end point). A filtration {Ft : t ∈ T } is said to be right– (or, left–)
continuous if Ft+ = Ft ∀t (resp., Ft− = Ft ∀ t).

Remark 13.4. In the case of filtrations generated by a stochastic process, i.e.,
Ft = σ(Xs : s ≤ t), t ≥ 0, say, the notions of left and right-continuous filtrations
correspond to the same sample path behaviors.

Note that given any filtration {Ft : t ∈ S} on an interval S, the filtration {Ft+}
(or, {Ft−}) is right– (resp., left– ) continuous (Exercise 5).

Theorem 13.6 (Regularization of Submartingales). For 0 < s ≤ ∞, let S = [0, s],
and let {Xt : t ∈ S} be a submartingale or supermartingale with respect to an
increasing family of sigmafields {Ft }. Suppose that {Xt : t ∈ S} is continuous in
probability at each t ≥ 0. Then there is a stochastic process {X̃ t : t ∈ S} such that:

a. (Stochastic Equivalence) {X̃ t } is a version of {Xt } in the sense that P(Xt =
X̃ t ) = 1 for each t ≥ 0.

b. (Sample Path Regularity) With probability 1 the sample paths of {X̃ t } are
bounded on compact intervals a ≤ t ≤ b, (a, b ≥ 0), and are right-continuous
and have left-hand limits at each t > 0.

c. {X̃ t : t ∈ S} is a {Ft+}-submartingale.

Proof. Fix 0 < T < s and let QT denote the set of rational numbers in [0, T ]. Write
QT =⋃∞

n=1 Rn , where each Rn is a finite subset of [0, T ] and s ∈ R1 ⊂ R2 ⊂ · · · .
By Doob’s maximal inequality we have

P

(

max
t∈Rn

|Xt | > λ

)

≤ E|XT |
λ

, n = 1, 2, . . . .

Therefore,

P

(

sup
t∈QT

|Xt | > λ

)

≤ lim
n→∞ P

(

max
t∈Rn

|Xt | > λ

)

≤ E|XT |
λ

.

In particular, the paths of {Xt : t ∈ QT } are bounded with probability 1. Let (c, d)
be any interval in R and let U (T )(c, d) denote the number of upcrossings of (c, d) by
the process {Xt : t ∈ QT }. Then U (T )(c, d) is the limit of the number U (n)(c, d) of
upcrossings of (c, d) by {Xt : t ∈ Rn} as n →∞. By Doob’s upcrossing inequality
one has
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EU (n)(c, d) ≤ E|XT | + |c|
d − c

.

Since, the U (n)(c, d) are non-decreasing with n, it follows that U (T )(c, d) is
a.s. finite. Taking unions over all (c, d), with c, d rational, it follows that with
probability one {Xt : t ∈ QT } has only finitely many upcrossings of any interval.
In particular, therefore, left- and right-hand limits must exist at each t < T a.s. To
construct a right-continuous version of {Xt : t ≤ T }, define X̃ t = limr→t+,r∈QT Xr

for t < T . That {X̃ t : t ≤ T } is in fact stochastically equivalent to {Xt : t ≤ T }
now follows from continuity in probability; i.e., X̃ t = limr→t+ Xr = Xt since a.s.
limits and limits in probability must a.s. coincide. Since X̃ t = Xt a.s., to prove (c) it
is sufficient to note that X̃ t is Ft+ measurable since Xt+ is measurable with respect
to Ft+ 1

n
for all n = 1, 2, . . . . Since T is arbitrary, the theorem follows. �

Exercises

1. Let τ1 ≤ τ2 be two {Ft : t ∈ T }–stopping times with values in [0,∞] interval.
(a) Prove that Fτ1 ⊂ Fτ2 . (b) Prove that a {Ft }-stopping time is an {Ft }-optional
time.

2. (i) Prove that τB defined in (13.4) is a {Ft }-stopping time for a continuous
parameter stochastic process t → Xt (t ∈ [0,∞)) if Xt takes values in a
metric space (S, ρ) and t → Xt is continuous.

(ii) Prove that if t → Xt is right-continuous with values in (S, ρ) and B is
open then τB is an optional time. [Hint: (i) [τB ≤ t] = ∩n∈N ∪r∈Q∩[0,t]
[ρ(Xr , B) ≤ 1

n ], where Q is the set all rational numbers. (ii) [τB < t] =
∪r∈Q∩(0,t)[Xr ∈ B].]

3. Check that the hypothesis of Theorem 13.3 holds in the derivations of (13.15)–
(13.17).

4. (i) Prove that if τ is an optional time with respect to a filtration {Ft : 0 ≤ t <
∞} then it is a stopping time with respect to the filtration {Gt : 0 ≤ t <∞},
where Gt = Ft+ .

(ii) Prove that τB is a {Ft+}-stopping time if B is an open or closed, provided
that t → Xt is continuous with values in a metric space.

5. Given a filtration {Ft : t ∈ S}, S an interval, prove that {Ft+} is right–
continuous.

6. Let f be a real–valued function on Q ∩ [0,∞) which has no discontinuities
of the second kind, and which is bounded on compacts. Define g(t) :=
lim inf f (s) as s ↓ t . Show that

(a) g is right–continuous on [0,∞],
(b) g has left–hand limits, and
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(c) g is bounded on compacts.

7. Let {Xt : t ∈ T } be a continuous {Ft : t ∈ T }–martingale on T = [0,∞),
X0 = x a.s. Suppose c < x < d and τ := inf{t ≥ 0 : Xt ∈ {c, d}} < ∞ a.s.
Prove P({Xt : t ∈ T } reaches d before c) = x−c

d−c .
8. Let {Xt : t ∈ T } be a stochastic process on (Ω,F) with values in some

measurable space (S,S), T a discrete set with elements t1 < t2 < · · · .
Define Ft = σ(Xs : 0 ≤ s ≤ t) ⊂ F , t ∈ T . Assume that τ is an
{Ft : t ∈ T }−stopping time and show that Fτ = σ(Xτ∧t : t ∈ T ); i.e.,
Fτ is the σ−field generated by the stopped process {Xτ∧t : t ∈ T }.

9. Show that the p-th variation of Brownian motion paths is a.s. infinite for p < 2,
and zero for p > 2.

10. Suppose {G(t) : t ≥ 0} is a process with stationary independent increments
having right-continuous sample paths with G(0) = 0. Assume that EG(t) =
ct, t ≥ 0, with c > 0 and Ee−qG(t) <∞ for some q > 0. Show

(i) m̃(q) := 1
t logEe−qG(t), t ≥ 0, does not depend on t . [Hint: Exploit

stationarity and independence of increments since for fixed q > 0 f (t +
s) := Ee−qG(t+s) = Ee−q(G(t+s)−G(s))e−q(G(s)−G(0)) = f (t) f (s), s, t ≥
0. Exploit log-linearity of the positive right-continuous function f on
[0,∞).]

(ii) P(u + G(t) < 0 for some t > 0) ≤ e−Ru where R = sup{q : m(q) ≥
0}.[Hint: Use the optional stopping theorem.]

(iii) If {G(t) : t ≥ 0} has continuous sample paths then one gets the equality
P(u + G(t) < 0 for some t > 0) = e−Ru . [Hint: The super-martingale is
actually a martingale when q = R.]

11. Consider the Brownian motion {Y x
t : t ≥ 0} having nonzero drift μ and

diffusion coefficient σ 2 > 0, starting at x .

(i) Show that Zt = exp{ξ(Yt − tμ)− ξ2σ 2

2 t }, t ≥ 0, is a martingale.
(ii) Verify the hypothesis of Theorem 13.3 for the validity of (13.13)–(13.17).



Chapter 14
Growth of Supercritical
Bienaymé–Galton–Watson Simple
Branching Processes

In this chapter the goal is to provide a precise calculation of the rate of
growth of a branching process under a mild moment condition on the offspring
distribution. The method illustrates the use of the size-bias change of measure
technique for an alternative model of branching processes that permits more
detailed description of the genealogy. For a given single progenitor the tree
graph structure then makes it possible to uniquely trace any given progeny
to its root. A natural distance between trees is also introduced that makes the
collection of all such family trees a complete and compact metric space.

Let us recall some general facts about the Bienaymé–Galton–Watson simple
branching process. Starting from a single progenitor X0 = 1, let X1, . . . be the
successive generation sizes having offspring distribution f (k), k = 0, 1, . . . , with
positive finite mean

0 < μ :=
∞∑

k=0

k f (k) <∞. (14.1)

Assume throughout, but without further mention, that 0 < f (0) + f (1) < 1 so
to avoid considerations of special degeneracies. Letting {L(n)

j : j, n ≥ 1} be a
collection of i.i.d. random variables on a probability space (Ω,F , P) distributed
according to f , one may define {Xn : n ≥ 0} according to the stochastic recursion
(beginning with X0 = 1),
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Xn+1 =
{∑Xn

j=1 L(n+1)
j , if Xn ≥ 1,

0 if Xn = 0.

Let us also recall that the event A := [limn→∞ Xn = 0] of extinction has a
probability ρ = P(A) which may be computed as the smallest fixed point of the
probability generating function f̂ (s) = ∑∞

k=0 sk f (k) of the offspring distribution.
In particular ρ = 1 in the subcritical (μ < 1) and in the critical (μ = 1) cases.
However, in the supercritical case (μ > 1) one has 0 ≤ ρ < 1. Also notice that
since the generation sizes Xn are non-negative integer valued, the extinction time
T = inf{n : Xn = 0} must be finite on the event A as well. Recall the following
simple observation pertaining to the mean rate.

Proposition 14.1. limn
Xn
μn = X∞ exists a.s. where P(0 ≤ X∞ < ∞) =

1, and EX∞ ≤ 1 if X0 = 1.

Proof. Simply recall that { Xn
μn : n ≥ 0} is a non-negative martingale and apply the

martingale convergence theorem, together with Corollary 12.4. �
Notice that this Proposition 14.1 also provides an alternative proof that ρ = 1 in the
subcritical case μ < 1 since μ−n → ∞ in this case and the indicated limit must
exist a.s. In any case, as already established in Theorem 9.1 for μ ≤ 1, one has

P(X∞ = 0) = 1 = ρ for μ ≤ 1. (14.2)

The main goal of this chapter is to determine the extent to which the mean
number of offspring determines the rate of population growth X0, X1, . . . on the
event Ac of non-extinction of a supercritical process. Our goal is to prove the
following cornerstone result of the theory. We let L denote a generic random
variable having the given offspring distribution.

Theorem 14.2 (Kesten–Stigum). Assume μ > 1, and define X∞ according to
Proposition 14.1. The following are equivalent: (a) P(X∞ = 0) = ρ; (b)
EX∞ = 1; (c) E L log+ L <∞.

Accordingly, the L log L condition (c) on the offspring distribution is, by (a), the
condition under which the almost sure growth rate is precisely given by μ, and by
(b) the condition for uniform integrability of the sequence {Xn/μ

n : n ≥ 1}. The
proof will rest on martingale theory and a size-biased change of measure.1

In order to facilitate this approach we require a more detailed representation
of the branching process as a probability distribution on the space Ω of family

1The use of this approach was noticed by Lyons et al. (1995). As a proof technique it has also
come to be known as the distinguished path technique, and has also had applications in a number
of other contexts, such as multiplicative cascades, tree polymers, coalescence, branching random
walk, and branching Brownian motion, that will be treated as special topics in Chapter 21 of this
text. Also see Arratia et al. (2019).
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trees furnished by the genealogy (family trees) of the initial individuals in a
branching process. Thus we will first develop another model (or probability space)
for branching processes in which the possible outcomes are coded by the possible
family trees. To describe the family trees corresponding to the branching process
{Xn : n ≥ 0} defined in the previous chapter by (9.1), suppose that initially there
are X0 = j individuals, encoded from left to right as 〈1〉, 〈2〉, . . . , 〈 j〉, and referred
to as roots or progenitors. Let L〈i〉 denote the number of offspring of individual
〈i〉, i = 1, . . . , j , and encode the L〈i〉 offspring comprising the first generation
of 〈i〉 as 〈i1〉, 〈i2〉, . . . , 〈i L〈i〉〉 if L〈i〉 ≥ 1. If L〈i〉 = 0, then the family tree of
〈i〉 stops there. One now proceeds recursively. Let {L〈v〉 : v ∈ ∪∞n=1N

n} be a
collection of i.i.d. random variables distributed as P(L〈v〉 = k) = f (k), k = 0,
1, 2, . . . . If 〈iv〉 ∈ N

n+1 is an n-th generation member of the family tree of
〈i〉 and L〈iv〉 ≥ 1, then the (n + 1)st generation offspring of 〈iv〉 are encoded2

as 〈iv1〉, 〈iv2〉, . . . , 〈ivL〈iv〉〉. Thus the family tree τ(〈i〉) of the initial (n = 0)
generation progenitor 〈i〉 is a set of finite sequences v ∈ ∪n≥1N

n , to be referred to
as vertices, such that:

a. 〈 j〉 ∈ τ(〈i〉) iff j = i , for i, j ∈ N.
b. If 〈vk〉 ∈ τ(〈i〉), then 〈v j〉 ∈ τ(〈i〉) for j ≤ k, j, k ∈ N.
c. If 〈vk〉 ∈ τ(〈i〉), then 〈v〉 ∈ τ(〈i〉), i, k ∈ N.

Condition (a) identifies 〈i〉 as the progenitor (root) of the family tree τ(〈i〉).
Condition (b) defines the left to right orientation of the (lexicographic) code, and
condition (c) defines the orientation with respect to successive generations. The
generation height of a root vertex is |〈i〉| = 0, and the height of a subsequent
offspring v = 〈i i1 . . . in〉 is denoted |v| ≡ |〈i i1 . . . in〉| = n.

By assigning an edge between any pair of vertices u, v ∈ τ(〈i〉) such that either
u = 〈v j〉 or v = 〈u j〉 for some j , the set τ(〈i〉) is a connected graph with no cycles
(i.e., a tree graph). Apart from the progenitors, the vertices represent individual
offspring as depicted in Figure 14.1. The forest τ(〈i〉), i = 1, 2, . . . , X0, depicts the
overall histories of an initially prescribed X0 individuals. Note that each offspring
vertex of the tree may be uniquely associated with its parental edge. We complete
this picture by assigning a “ghost” edge to each progenitor 〈i〉.

One may now view the Bienaymé–Galton–Watson simple branching model
started from a single progenitor as a probability distribution P on the space Ω of
family trees τ rooted at 〈1〉 ∈ τ as defined above and equipped with a Borel σ−field
B as follows: Let d denote the non-negative function on Ω × Ω defined (with the
conventions inf ∅ = ∞, and 1

1+∞ = 0) by

d(τ, η) = 1

1+ inf{k : τ |k �= η|k} , τ, η ∈ Ω, (14.3)

2This is often referred to as the Harris-Ulam labeling.
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(1)

(1, 1)

(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 1, 4) (1, 2, 1) (1, 2, 2)

(1, 2) (1, 3)

Fig. 14.1 Bienaymé–Galton–Watson Tree Graph

where τ |0 = η|0 = 〈1〉, τ |k, η|k denote the subtrees of τ , η, comprising the
vertices present in their respective first k generations, i.e., τ |k = {〈1v1 · · · v j 〉 ∈
τ : j ≤ k}, k ≥ 1. That is, the distance between two trees τ and η is measured in
terms of shortest length of the common ancestral lines originating with the common
progenitor. Then one may check that d defines a metric which makes Ω a complete
and separable compact metric space (Exercise 1). The open ball centered at τ ∈ Ω

of radius 1
n+1 is given by

B 1
n+1

(τ ) = {η ∈ Ω : η|n = τ |n}. (14.4)

For emphasis, note again that the set B 1
n+1

(τ ) only specifies the structure of the

tree in the first n generations which, in turn, only specifies the offspring of vertices
belonging to the first n − 1 generations. In particular, B1({〈1〉}) = Ω , and the open
ball B 1

n+1
(τ ) of radius 1

n+1 centered at τ defines the finite-dimensional event [τ ]n
that the first n generations of the tree are given by τ |n. In this framework

Xn(τ ) =
{

card{〈1〉} = 1, if n = 0,
card{v ∈ τ : 〈1v1 . . . vn〉 ∈ τ } if n ≥ 1.

Given an offspring probability mass function f (k) : k = 0, 1, . . . the probability
measure P is uniquely defined on B (Exercise 2) by prescribing

P(B1({〈1〉})) = 1, P(B 1
n+1

(τ )) =
∏

v∈τ |(n−1)

f (#v), n ≥ 1, (14.5)
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where the indicated product for n ≥ 1 is over all vertices in the first n−1 generations
of τ and #v denotes the number of offspring of v = 〈1v1 · · · vk〉 in τ , i.e., #v is the
cardinality of { j ∈ N : 〈1v1 · · · vk j〉 ∈ τ }. Also the product is restricted to n − 1
since the numbers of n−generation offspring is not specified by B 1

n+1
(τ ). In view of

the following proposition, the successive generation sizes Xn, n ≥ 0, of Chapter 9
are readily identified within this framework.

Proposition 14.3. For a given offspring distribution f (k) ≥ 0,
∑∞

k=0 f (k) = 1,
let (Ω,B, P) be defined by prescribing probabilities according to (14.5). The
stochastic process of successive generation sizes defined by X0(τ ) = 1, τ ∈ Ω ,
and Xn(τ ) = card{v : |v| = n, 〈1v1 · · · vn〉 ∈ τ }, τ ∈ Ω, n = 1, 2 . . . , is a
Markov chain on the state space of non-negative integers with initial distribution
P(X0 = 1) = 1 and one-step transition probabilities P(Xn+1 = j |Xn = i) =
f ∗i ( j), i, j = 0, 1, 2, . . . .

Proof. The assertion is that

P(X0 = 1, . . . , Xn = in) = P(X0 = 1, . . . , Xn−1 = in−1) f ∗in−1(in). (14.6)

First note that P(X0 = 1) = P(B1({〈1〉})) = 1, and

P(X0 = 1, X1 = i1) = P(B 1
2
({〈1〉, 〈11〉, . . . , 〈1i1〉}))

= f (#〈1〉) = f (i1), i1 = 0, 1, . . . . (14.7)

Next, the event [X0 = 1, X1 = i1, X2 = i2] is a disjoint union of balls of radius 1/3
defined by the integral partitions of i2 into i1 terms. Thus,

P(X0 = 1, X1 = i1, X2 = i2)

= f (#〈1〉)
∑

#〈11〉+···+#〈1i1〉=i2

f (#〈11〉) f (#〈12〉) · · · f (#〈1i1〉)

= f (i1) f ∗i1(i2). (14.8)

So the assertion holds for n = 1, 2. The result follows as in these cases since [X0 =
1, . . . , Xn = in, Xn+1 = in+1] is the disjoint union

∪τ∈T (1,i1,...,in)∪π {η ∈ Ω : η|(n+1) = τπ |(n+1)} = ∪τ∈T (1,i1,...,in)∪π B 1
n+2

(τπ ),

where T (1, i1, . . . , in) is the (finite) collection of all n generation trees τ =
τ(1, i1, . . . , in) having the successive generation sizes i0 = 1, i1, . . . , in subject
to coding rules (a)–(c), with no further offspring, and τπ denotes a family tree
extension of such a τ ∈ T (1, i1, . . . , in) to n + 1 generations determined by
integral partition π of in+1 into in terms. That is, with i0 = 1, and noting that
P(B 1

n+2
(τπ )) =∏

v∈τπ |n f (#v),
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P(X0 = i0, . . . , Xn = in, Xn+1 = in+1)

=
∑

τ∈T (1,i1,...,in)

∑

π

P(B 1
n+2

(τπ ))

=
∑

τ∈T (1,i1,...,in)

∏

v∈τ |n−1

f (#v)
∑

π

∏

v∈τπ ,|v|=n

f (#v)

=
∑

τ∈T (1,i1,...,in)

P(B 1
n+1

(τ )) f ∗in (in+1)

= P(X0 = 1, X1 = i1, . . . , Xn = in) f ∗in (in+1).

�
The event Ac of non-extinction corresponds to the occurrence of infinite trees τ ,

or equivalently, trees with at least one infinite line of descent path emanating from
the root 〈1〉. Any non-degenerate asymptotic number Xn(τ ) of progeny at level n
will depend on the preponderance of such infinite paths. Thus we will analyze the
distribution of trees from the perspective of a “randomly selected (distinguished)
infinite path.” This technique relies heavily on martingale convergence and, espe-
cially, the Lebesgue decomposition of measures given in Corollary 12.8, which the
reader may wish to review at the outset.

For a tree graph structure, that is a connected graph without loops rooted
at 〈1〉, any vertex v = 〈1v1 . . . vm〉 defines a unique path of vertices
〈1〉, 〈1v1〉, . . . , 〈1v1 . . . vm〉 between itself and the root. Similarly, an infinite line
of descent path from the root 〈1〉 of an infinite tree may be defined by an infinite
sequence γ = 〈1γ1γ2 . . . 〉, γ j ∈ N, j ≥ 1. The intuitive idea is to first enlarge the
probability model (Ω,B, P) to encode trees with infinite line of descent paths as
pairs (τ, γ ), where τ ∈ Ω is an infinite tree having an infinite line of descent path
γ , i.e., 〈1γ1γ2 . . . γm〉 ∈ τ for all m ≥ 1, denoted by a slight abuse of notation as
γ ∈ τ . The Figure 14.2 is an aid to understanding this enlargement.

Let Ω∞ denote the subspace of Ω consisting of infinite trees. Then Ω∞ is
a closed set for the metric d given by (14.3) and therefore Borel measurable
(Exercise 4). Let Γ := {1} × N

N be the collection of all infinite paths emanating
from the root 〈1〉. Let Ω∗ denote the space of tree-path pairs (τ, γ ) where τ ∈
Ω∞, γ ∈ τ . The σ−field B∗ will denote the σ−field of subsets of B∗ generated by
finite-dimensional events of the form

[(τ, γ )]n := {(η, α) ∈ Ω∗ : η|n = τ |n, α|n = γ |n}, (14.9)

where γ |n = 〈1γ1 . . . γn〉, γ ∈ Γ . The probabilities assigned to such an extension
are intuitively a manifestation of the conditional probability formula

“prob(τ, γ ) = prob(τ |γ )prob(γ )′′. (14.10)
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γ|0 = < 1 >

BGW BGW< 11 <> 13 >γ|1

BGWγ|2

BGW BGW BGW γ|3

γ|0 = < 1 >→ γ|1 → γ|2 → γ|3 → · · ·

Fig. 14.2 Size-biasing along distinguished path

Considering that the infinite paths through a given tree are statistically indistin-
guishable under the definition (14.5), paths should be “selected uniformly in trees.”
However, conditioning on the existence of an infinite line of descent will re-weight
the probability (14.5). Observe that for a specified tree τ having X1(τ ) = k first
generation offspring, there will be k corresponding subtrees τ ( j) rooted at 〈1 j〉,
j = 1, . . . , k. A given path γ ∈ τ will have γ ∈ τ ( j) for one and only one j , say
j = l. According to the model (14.5) one has for such fixed τ ,

P([τ ]n+1) = f (k)
k∏

j=1

P([τ ( j)]n) = k f (k)
1

k
P([τ (l)]n)

k∏

j �=l

P([τ ( j)]n). (14.11)

Multiplying this equation by 1
μn+1 and defining

Q([τ, γ ]n) := P([τ ]n)
μn

, (14.12)

one has the consistent definition of a probability Q on Ω∗ such that
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Q([τ, γ ]n+1) = k f (k)

μ

1

k
Q([τ (l), γ ]n)

k∏

j �=l

P([τ ( j)]n). (14.13)

Note that f̃ (k) = k f (k)/μ, k = 0, 1, 2, . . . , is a new offspring probability
distribution for production along the randomly selected path γ , while off the path
offspring are generated according to f . In particular, along the path γ f̃ (0) = 0, so
that at least one offspring is sure to occur at each generation along the path. Now,
since each n-th generation vertex defines a unique path to the root, summing over
the paths γ such that γ |n ∈ τ |n in (14.12), yields the marginal P∗ distribution is
given by

P∗([τ ]n) = Xn(τ )

μn
P([τ ]n) ≡ Qn(τ )P([τ ]n), (14.14)

where Qn(τ ) = Xn(τ )
μn , τ ∈ Ω∞. In particular P∗ is absolutely continuous with

respect to P on each σ−field Fn with Radon-Nikodym derivative Qn(τ ), i.e.,

d P∗

d P
= Qn on Fn, n = 0, 1, 2, . . . . (14.15)

The probabilities k f (k)
μ

, k = 1, 2, . . . comprise the size-biased offspring distribu-
tion, and P∗ is naturally referred to as the corresponding size-bias change of the
probability P .

Example 1. Consider the Bernoulli offspring distribution 1 − f (0) = f (2) = p,
p > 1/2, with mean μ = 2p. Then the size-biased offspring distribution is
deterministic f̂ (k) = k f (k)/μ = δ2,k, k ≥ 0. Thus, two offspring are produced
at each generation along a distinguished path, while off the path the offspring either
doubles or dies with probabilities p, q = 1− p, respectively. In particular, since the
root belongs to every path, the process begins with two offspring of the root. This
may be verified from (14.14) since for [τ ]1 = {〈1〉, 〈11〉, 〈12〉} one has P∗([τ ]1) =
X1(τ )

2p P([τ ]1) = 2
2p p = 1. For [τ ]2 = {〈1〉, 〈11〉, 〈12〉〈111〉, 〈112〉}, P∗([τ ]2) =

X2(τ )

(2p)2
P([τ ]2) = 2

4p2 p2q = q/2. Similarly, for [τ ]2 = {〈1〉, 〈11〉, 〈12〉〈121〉, 〈122〉},
while for [τ ]2 = {〈1〉, 〈11〉, 〈12〉, 〈111〉, 〈112〉, 〈121〉, 〈122〉}, one has P∗([τ ]2) =

4
4p2 p3 = p. In particular, these three events exhaust the total P∗ probability, i.e.,
p + q/2+ q/2 = 1.

A major mathematical advantage of the size-bias change of probability is the
induced exchange of the determination of “vanishing/non-vanishing” of limits with
that of “non-finiteness/finiteness”; i.e., notice that d P/d P∗ = 1/Qn on Fn . This
reasoning is made precise using the Lebesgue decomposition of measures given in
Corollary 12.8. In particular, taking m = P∗ and q = P there, we have P∗ << P
on each Fn with Radon-Nikodym derivative Qn = d P∗/d P = Xn

μn on Fn . As per
Corollary 12.8 define
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Q∞(x) = lim sup
n→∞

Qn(x), x ∈ S.

Then, in accordance with the Lebesgue decomposition into its absolutely continuous
and singular components,

P∗(A) = EP (1A Q∞)+ P∗(A ∩ [Q∞ = ∞]), A ∈ F .

In particular

a. P∗ << P ⇐⇒ P∗([Q∞ = ∞]) = 0 ⇐⇒ EP Q∞ = P∗(Ω) (= 1)
b. P∗ ⊥ P ⇐⇒ P∗([Q∞ <∞]) = 0 ⇐⇒ EP Q∞ = 0.

Thus, as noted earlier, there is a trade between 0 and∞ such that Q∞ = 0, P-a.s. if
and only if Q∞ = ∞, P∗-a.s., and Q∞ > 0 with positive P-probability if and only
if Q∞ < ∞ with positive P∗-probability. So the task for the proof of the Kesten–
Stegum theorem is to determine when Q∞ = limn

Xn
μn is P∗ − a.s. finite or not. For

this we employ the following simple first departure bounds based on the departures
along a given line of descent path into branching subtrees; also referred to as a spine
decomposition.

Proposition 14.4. For any (τ, γ ) ∈ Ω∗

Xn,n−1(τ )

μn
≤ Xn(τ )

μn
≤ 1

μn
+

n−1∑

j=1

Xn, j (τ )

μn− j

1

μ j
,

where Xn, j (τ ) is the number of offspring descendants of 〈1γ1 . . . γ j 〉 in the n−th
generation of τ .

Proof. The lower bound is obvious from the definition of Xn since every path to
the n−th generation must pass through the (n − 1)−st generation. For the upper
bound, any path to the n−th generation must either coincide with γ or have a height
1 ≤ j ≤ n − 1 of first departure. �

We may now prove the Kesten–Stigum Theorem 14.2:

Proof. Assume mean offspringμ > 1 and define X∞ according to Proposition 14.1.
Suppose first that EP∗ log L ≡ 1

μ
EP L log+ L = ∞. In particular Xn,n−1, n ≥ 1,

are i.i.d. under P∗ with infinite mean. Thus

lim sup
n

Xn,n−1

μn
= lim sup

n
elog

Xn,n−1
μn = lim sup

n
en(

log Xn,n−1
n −logμ) = ∞

(14.16)
since, by the Borel–Cantelli lemma, lim sup log Xn,n−1

n = ∞, P∗−a.s. (Exercise 5).
Thus by the lower bound in the first departure decomposition, it follows that
Q∞ = ∞ (P∗−a.s.), i.e., P∗([Q∞ < ∞]) = 0. In particular, therefore, by
the Lebesgue decomposition it follows that EP X∞ ≡ EP Q∞ = 0. Conversely
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suppose that EP∗ log L ≡ 1
μ
EP L log+ L < ∞. Let us check that the upper

bound sum
∑n−1

j=0
Xn, j
μn is conditionally under Q given σ(Lγ | j , j ≥ 0) a non-

negative submartingale with bounded expectation and therefore (conditionally) a.s.
convergent. To see the martingale property note that for each fixed j , (1 ≤ j ≤
n − 1), under Q, E(

Xn+1, j

μn+1 |F∗n , γ ) = Xn, jμ

μn+1 = Xn, j
μn . E(

X j+1, j

μ j+1 |F j , γ ) = Lγ | j
μ j as

well. In fact,
Xn, j

μn− j , n ≥ j + 1, is the non-negative martingale associated with a
Bienaymé–Galton–Watson process having offspring distribution f and Lγ | j initial
progeny under Q given σ(Lγ | j : j ≥ 0). Thus

EQ

⎧
⎨

⎩

n−1∑

j=0

Xn, j

μn− j

1

μ j
|σ(Lγ |k, k ≥ 0)

⎫
⎬

⎭
=

n−1∑

j=1

Lγ | j
μ j

.

Now using the condition EP∗ log L < ∞ and Borel–Cantelli lemma it follows
(Exercise 5) that

∑n−1
j=1

Lγ | j
μ j converges P∗−a.s. to a finite non-negative limit; i.e.,

the conditional expectations are (conditionally) a.s. bounded by
∑∞

j=1
Lγ | j
μ j < ∞,

as asserted. Now, taking expectations,

EP∗
n−1∑

j=0

Xn, j

μn
<∞.

Thus P∗−a.s. Q∞ < ∞, i.e., P∗([Q∞ = ∞]) = 0. So, using the Lebesgue
decomposition, we have that EP X∞ ≡ EP Q∞ = 1. �
Corollary 14.5. Assume μ > 1, X0 = 1, as well as the EL log+ L <∞ condition
of the Kesten-Stigum theorem. Then X∞ solves the stochastic fixed point equation

X∞ =dist 1

μ

X1∑

j=1

X ( j)∞ ,

where X ( j)∞ , j = 1, 2, . . . , are independent of X1 and distributed as X∞. Let γ (t) =
Ee−t X∞ , t ≥ 0. Then γ is the unique solution to the functional equation

γ (μt) = f̂ ◦ γ (t), |γ ′(0+)| = EX∞ <∞ t ≥ 0.

Proof. Both stochastic fixed point equation and the equation for the Laplace
transform are obtained in the Kesten-Stigum limit from the recursion

Xn+1

μn+1
=dist 1

μ

X1∑

j=1

X ( j)
n

μn
,
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where {X ( j)
n : n ≥ 0}, j = 1, . . . , are i.i.d. distributed as {Xn : n ≥ 0}, X ( j)

n , n ≥ 0,
being the branching process originating from the j-th offspring of the root. Suppose
that γ and γ̃ are solutions to the functional equation with |γ̃ ′(0+)| = |γ ′(0+)| <∞.

Then, since f̂ (t)− f̂ (s)
t−s ≤ f̂ ′(1) = μ, 0 ≤ s < t ≤ 1, by convexity, one has after

iteration that

|γ̃ (t)− γ (t)| = | f̂ ◦ γ̃ ( t

μ
)− f̂ ◦ γ ( t

μ
)|

≤ μ|γ̃ ( t

μ
)− γ (

t

μ
)|

≤ · · · ≤ μn|γ̃ ( t

μn
)− γ (

t

μn
)|

= μn|γ̃ ( t

μn
)− γ̃ (0)− (γ (

t

μn
)− γ (0))|

= t

∣
∣γ̃ ( t

μn )− γ̃ (0)− (γ ( t
μn )− γ (0))|

t
μn

∣
∣

→ t |γ̃ ′(0+)− γ ′(0+)| = 0,

in the limit as n →∞. This proves uniqueness. �

Exercises

1. Show that the function d defined by (14.3) makes Ω a complete and separable
metric space. [Hint: The set D = {τ : ||τ || < ∞} is countable and it is dense in
Ω . If {τk : k ≥ 1} is Cauchy, then for every n = 0, 1, 2, . . . , τk |n = τm |n for all
sufficiently large m, k (depending on n).]

2. Show that (14.5) uniquely specifies the probability measure P on B. [Hint: Apply
the Caratheodory construction3]

3. (Seneta’s Theorem) A Bienaymé–Galton–Watson branching process with immi-
gration is defined as follows: Let Y1,Y2, . . . be i.i.d. non-negative integer-valued
random variables. The branching process begins with the immigration of Y1
initial progenitors and each independently of the others produces a random
number of offspring according to the offspring distribution f (k), k ≥ 0.
The second generation consists of these offspring together with an additional
independent number of Y2 immigrants, and so on as defined by the stochastic
recursion

3See BCPT pp. 225–228.
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X0 = Y1, Xn+1 =
Xn∑

j=1

L(n+1)
j + Yn+2, n ≥ 0,

where {L(n)
j : j ≥ 0, n ≥ 1} are i.i.d. distributed according to the offspring

distribution f and independent of Y1,Y2, . . . . Assume μ = ∑∞
k=1 k f (k) > 1.

Show that if E log+ Y1 <∞, then limn
Xn
μn exists a.s. and is a.s. finite. Show that

if E log+ Y1 = ∞ then lim supn
Xn
mn = ∞ a.s. for any constant m > 0. [Hint:

Use the size-bias change of measure to mimic the proof of the Kesten-Stigum
theorem.]

4. Show that Ω∞ is a closed set.
5. Show that if L1, L2, . . . is an i.i.d. sequence of non-negative random variables,

then lim supn
Ln
n is a.s. either 0 or ∞ according to whether EL1 < ∞ or

EL1 = ∞, respectively. [Hint: Use the Borel–Cantelli lemma.] Use this to show
lim supn

Xn,n−1
μn = ∞, P∗−a.s. if EP L log+ L = ∞, and to show

∑n−1
j=1

Lγ | j
μ j

converges P∗−a.s. when EP L log+ L <∞.

6. Suppose that the offspring distribution is given by the geometric distribution
f (k) = qpk , k = 0, 1, 2 . . . where q = 1− p, 0 < p < 1. Show that

(i) f̂ (s) =
∞∑

k=0

sk f (k) = q

1− ps

(ii) f̂ o(n)(s) = qμn(1− s)+ ps − q

pμn(1− s)+ ps − q
, μ = p

q where the composite func-

tion f̂ o(n)(s) is inductively defined f̂ o(1)(s) := f̂ (s), f̂ o(n+1)(s) :=
f̂ ( f̂ o(n)(s)).

(iii) EX0=1 s Xn = f̂ o(n)(s).
(iv) In the supercritical case μ > 1 show that Xn

μn converges in distribution to
a random variable Z∞ exponentially distributed as P(X∞ > x) = (1 −
ρ)e−(1−ρ)x , x > 0, where P(X∞ = 0) = ρ = 1−√1−4pq

2p .
(v) In the subcritical case μ < 1, show that P (Xn = k|Xn > 0) −→ (1 −

μ)μk−1.

7. Let ψ = f̂ −1 on [q, 1], and ψn = ψ◦n the iterated compositions, with ψ0(s) =
s. Show that Mn(s) = ψn(s)Xn , n = 0, 1, 2, . . . , is a positive martingale for each
q ≤ s < 1, bounded by one.



Chapter 15
Stochastic Calculus for Point Processes
and a Martingale Characterization of the
Poisson Process

The main purpose of this chapter is to provide a martingale characterization
of the Poisson process obtained in Watanabe (1964). This will be aided by the
development of a special stochastic calculus1 that exploits its non-decreasing,
right-continuous, step-function sample path structure when viewed as a
counting process; i.e., for which stochastic integrals can be defined in terms
of standard Lebesgue integration theory.

We begin with two general definitions.

Definition 15.1. A non-negative integer-valued stochastic process N = {N (t); t ≥
0}, N (0) = 0, defined on a probability space (Ω,F , P), whose sample paths are
right-continuous step functions with unit jumps, is referred to as a simple point
process or counting process

Remark 15.1. The terminology of “simple point process”places emphasis on the
points of discontinuity at which the (unit) jumps occur in the counting process.
Equivalently, one may view the counting process as a random measure with unit
atoms at each point of discontinuity. More general notions of point processes permit
integer jumps of magnitude greater than one. The mathematical representation
in terms of random measures, even random linear functionals, finds numerous
applications.2

1A more comprehensive treatment of point processes from a martingale perspective is given in
Brémaud (1981).
2For example, see Le Cam (1960b), Sun and Stein (2015), and extensive list of the references
therein.
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186 15 Stochastic Calculus for Point Processes

Definition 15.2. Let Ft , t ≥ 0 be a filtration on (Ω,F), and let λ be a non-negative
measurable function on [0,∞). A Poisson process with intensity function λ with
respect to the filtration Ft , t ≥ 0 is a simple point process N adapted to this
filtration, such that N (t)− N (s) is independent of Fs for each 0 ≤ s < t , and

P(N (t)− N (s) = n|Fs) = (
∫ t

s λ(r)dr)n

n! exp{−
∫ t

s
λ(r)dr}, n = 0, 1, 2, . . . .

Observe that a sample path t → N (ω, t), t ≥ 0, of a simple point process
may be viewed as the distribution function of a measure, again denoted N , on
[0,∞), with atoms at 0 < T1 < T2 < · · · . Thus, for each ω ∈ Ω the
integral

∫ t
0 f (s)d N (s) ≡ ∫ t

0 f (s)N (ds) may be viewed sample pathwise as defined
by a Lebesgue–Stieltjes integral3 for non-negative, measurable (deterministic)
integrands f , and more generally as usual for f = f + − f − in the case f ±
both have finite integrals. Of course this interpretation can be achieved whenever
the sample paths of the integrator N are functions of bounded variation on bounded
intervals. The measurability issues arise in connection with stochastic integrands
f as will be defined below. However, it should be emphasized that the “stochastic
calculus”developed here essentially depends only on standard Lebesgue integration
concepts from real analysis. In particular, if N is a counting process with jumps at
0 < T1 < T2 · · · , and if ϕ : [0,∞) → R is an arbitrary left-continuous function,
then

∫ t

0
ϕ(s)d N (s) =

N (t)∑

j=1

ϕ(Tj ), t ≥ 0. (15.1)

The following definition is introduced for extensions to stochastic integrands
with a goal of preserving certain martingale structure.

Definition 15.3. Given a filtration Ft , t ≥ 0, on (Ω,F), the σ -field of subsets of
(0,∞)×Ω generated by sets of the form, (s, t]× A, 0 ≤ s ≤ t, A ∈ Ft , is referred
to as the Ft−predictable σ -field on (0,∞) × Ω . A real-valued stochastic process
ϕ = {ϕ(t) : t ≥ 0} such that ϕ(0) is F0-measurable, and (t, ω) → ϕ(t, ω), t >
0, ω ∈ Ω , is measurable with respect to the predictable filtration on (0,∞)×Ω , is
said to be an Ft−predictable process.

Note that a predictable process would also be a progressively measurable process
as defined by Definition 13.3. The following theorem is useful in keeping track of
predictability.

Theorem 15.1. If a real-valued stochastic process ϕ, adapted to a filtration Ft , t ≥
0, has left-continuous sample paths, then ϕ is Ft -predictable on (0,∞)×Ω.

3See BCPT p. 228, for Lebesgue–Stieltjes measure and integration.
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Proof. For each n = 1, 2, . . . , one has by left-continuity that ϕ(t, ω) =
limn→∞ ϕ(2−n[2nt], ω) for each (t, ω) ∈ (0,∞) × Ω . Moreover, 2−n[2nt] ≤ t .
Thus ϕ can be expressed as a point-wise limit of Ft -predictable processes
ϕn(t, ω) = ϕ(2−n[2nt], ω). �

Let us recall Definition 13.5 that a filtration Ft , t ≥ 0 is said to be left-continuous
if

Ft = Ft− = σ(∩s<tFs, ) t > 0, F0− = F0.

In general, if N is a simple point process and ϕ is a Ft -predictable process, then
the stochastic differential equation

d X (t) = ϕ(t−)d N (t), X (0) = x, (15.2)

is defined by

X (t) = x +
∫ t

0
ϕ(s−)d N (s) = x +

N (t)∑

j=1

ϕ(T−j ). (15.3)

Theorem 15.2. Suppose that M = {M(t) : t ≥ 0} is a martingale with respect
to a filtration Ft , t ≥ 0, on (Ω,F , P). Assume that the sample paths of M are
of bounded variation on bounded intervals. If ϕ = {ϕ(t) : t ≥ 0} is a Ft -
predictable process such that

∫ t
0 |ϕ(s)||M |(ds) < ∞ for each t ≥ 0, where

|M | = M+ + M−, then X (t) = ∫ t
0 ϕ(s

−)M(ds), t ≥ 0, defines a martingale,
where the stochastic integrals are sample pathwise Lebesgue–Stieltjes integrals. In
particular E

∫ t
0 ϕ(s

−)M(ds) = 0, t ≥ 0.

Proof. Suppose that Gs is a bounded Fs-measurable function. Then, for 0 ≤ s < t ,

E(Gs X (t)) = E

∫ t

0
Gsϕ(u

−)M(du)

= E{Gs

∫ s

0
ϕ(u−)M(du)} + E{GsE(

∫ t

s
ϕ(u−)M(du)|Fs)}

= E{Gs

∫ s

0
ϕ(u−)M(du)} = E(Gs X (s)). (15.4)

The martingale property implies EX (t) = EX (0) = 0. �
Lemma 1 (A Simple Stochastic Lebesgue–Stieltjes Lemma). Suppose that h is an
arbitrary measurable function, and suppose γ is Ft -predictable. Consider,

d X (t) = γ (t−)d N (t), t > 0, X (0) = x .
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Then

h(X (t))− h(x) =
∫ t

0
{h(X (s−)+ γ (s))− h(X (s−))}d N (s). (15.5)

Proof. Under the hypothesis one has

X (t) = x +
N (t)∑

j=1

γ (T−j ), t ≥ 0. (15.6)

Moreover,

N (Tj ) = 1+ N (T−j ), j = 1, 2, . . . . (15.7)

In particular,

X (Tj ) = x +
N (T−j )+1
∑

k=1

γ (T−k ) = X (T−j )+ γ (Tj ), j = 1, 2, . . . . (15.8)

Thus, noting that with T0 = 0, one has

h(X (t)) = h(x)+
N (t)∑

j=1

{h(X (Tj ))− h(X (Tj−1))}

= h(x)+
N (t)∑

j=1

{h(X (T−j )+ γ (Tj ))− h(X (T−j ))}

= h(x)+
∫ t

0
{h(X (s−)+ γ (s))− h(X (s−))}d N (s). (15.9)

�
Theorem 15.3 (Watanabe’s Martingale Characterization of Poisson Processes).
Suppose that N = {N (t) : t ≥ 0} is a simple point process and t → λ(t), t ≥ 0, is a
non-negative measurable and locally integrable function such that M(t) = N (t) −∫ t

0 λ(s)ds, t ≥ 0, is a martingale with respect to a filtration Ft , t ≥ 0, on (Ω,F , P).
Then N is a Poisson process with respect to the filtration Ft , t ≥ 0, with intensity λ.

Proof. For the proof we exploit the uniqueness theorem4 for Laplace transform by
showing, for r on a half-line, and bounded Fs-measurable Gs , for fixed s ≥ 0,

4See Feller (1971), p. 430.
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E(Gser(N (t)−N (s))) = exp{(er − 1)
∫ t

s
λ(u)du}EGs, 0 ≤ s < t. (15.10)

Note that the finiteness of EN (t) is implicit in the martingale condition. Applying
Lemma 1 to

Y (s, t) = Gser(N (t)−N (s)) = Gse−r N (s)er N (t), t ≥ s,

one has, taking h(N (t)) = er N (t), γ ≡ 1, that in differential form (with respect to t
for fixed s),

dt Y (s, t) = Gse−r N (s){er(N (t−)+1) − er N (t−)}d N (t)

= Gse−r N (s)er N (t−)(er − 1)d N (t)

= Y (s, t−)(er − 1)d N (t). (15.11)

It is notationally convenient to continue to express the integral equations in their
differential form. In this spirit, one may write d N (t) = λ(t)dt + d M(t), t ≥ 0, so
that

dt Y (s, t) = Y (s, t−)(er − 1)λ(t)dt + Y (s, t−)(er − 1)d M(t), t ≥ s.

Now, the meaning is that for 0 ≤ s ≤ t , noting Y (s, s) = Gs ,

Y (s, t) = Gs + (er − 1)
∫ t

s
Y (s, u−)λ(u)du + (er − 1)

∫ t

s
Y (s, u−)d M(u).

Taking expectations one has, writing gs = EGs , y(s, t) = EY (s, t), 0 ≤ s ≤ t ,

y(s, t) = gs + (er − 1)
∫ t

s
λ(u)y(s, u−)du = gs + (er − 1)

∫ t

s
λ(u)y(s, u)du,

where continuity of t → y(s, t) follows from the first integral. Differentiating with
respect to t , yields the equation

d

dt
y(s, t) = (er − 1)λ(t)y(s, t), 0 ≤ s ≤ t, y(s, s) = gs,

and the uniquely determined solution follows by a simple integration of dy/y.
Namely,

EGser(N (t)−N (s) = y(s, t)

= EGs exp{(er − 1)
∫ t

s
λ(u)du}.

(15.12)

�
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The function A(t) = ∫ t
0 λ(s)ds, t ≥ 0, for which M(t) = N (t)− A(t), t ≥ 0, is

a martingale is referred to as a compensator for the simple point process N . More
generally,

Definition 15.4. Let N be a counting process. An increasing, predictable process
A(t), t ≥ 0, such that M(t) = N (t)− A(t), t ≥ 0, is a martingale, is referred to as
a compensator for N .

An example of a more general compensator than in the Poisson case is given in
the Exercise 2.

Exercises

1. Suppose that Z = {Z(t) : t ≥ 0} is a (cadlag) predictable process of bounded
variation, and Y = {Y (t) : t ≥ 0} is predictable with E

∫ t
0 |Y (s)||Z |(ds) < ∞,

for each t ≥ 0, where integration is defined sample pathwise with respect to
the Lebesgue–Stieltjes measure Z . Show that X (t) = ∫ t

0 Y (s)Z(ds), t ≥ 0 is a
predictable process (See Remark 7.4).

2. (Cox process or Doubly Stochastic Poisson Process) Let Λ(dt) be a locally finite
random measure on the Borel σ -field of [0,∞). The Cox process is the counting
process N that conditionally given Λ, has a Poisson distribution with intensity
measure Λ(dt). Show that A(t) = Λ[0, t], t ≥ 0, defines a compensator for N .

3. Let N be a Poisson process with constant intensity parameter λ > 0.

(i) Show directly that Y (t) = eμN (t)−λ(eμ−1)t , t ≥ 0, is a positive martingale.
(ii) Compute limt→∞ Y (t).

4. Let N be a simple point process on [0,∞) with jumps at 0 < T1 < T2 < · · · ,
and let μ, γ, x be arbitrary fixed real numbers. Consider d X (t) = μX (t−)dt +
γ d N (t), t > 0, X (0) = x . Show that X (t) = xeμt + γ

∫ t
0 eμ(t−s)d N (s), t ≥ 0.

[Hint: Multiply the equation by e−μt and consider Y (t) = e−μt X (t), t ≥ 0.]
5. Let N be a simple point process on [0,∞) with jumps at 0 < T1 < T2 < · · · ,

and let μ, γ, x be arbitrary fixed real numbers. Consider d X (t) = μX (t−)dt +
γ X (t−)d N (t), X (0) = x, t ≥ 0.

(i) Show that X (t) = xeμt ≡ xeμt− , 0 ≤ t < T1, and X (T1) = (1 +
γ )X (T−1 ) = x(1+ γ )eμT1 .

(ii) Show for T1 ≤ t < T2, X (t) = xeμ(t−T1)(1 + γ )eμT1 = xeμt (1 + γ ),
T1 ≤ t < T2, and X (T2) = (1+ γ )X (T−2 ) = x(1+ γ )2eμT2 .

(iii) Show X (t) = xeμt (1+ γ )N (t), t ≥ 0.
(iv) Assume that N is a Poisson process with intensity λ > 0. Calculate EX (t).

(v) Assume that μ, γ are predictable and show X (t) = xe
∫ t

0 μ(s)ds ∏
n:Tn≤t (1+

γ (Tn)) = xe
∫ t

0 μ(s)ds+∫ t
0 ln(1+γ (s))d N (s), t ≥ 0.



Chapter 16
First Passage Time Distributions for
Brownian Motion with Drift and a Local
Limit Theorem

A local limit theorem for convergence of probability density functions is
provided as a tool for the computation of hitting time distributions for
Brownian motion, with or without drift, as a limit of hitting times for random
walk, and other asymptotic limit theorems of this nature.

The “first passage time” refers to the time of first arrival to a point in space by the
stochastic process, in this case Brownian motion. The purpose of this chapter is two-
fold. First we will show that the pdf of the first passage time of Brownian motion
without drift, computed (identified) in Corollary 7.14 by the reflection principle,
is also the limit of the first passage time densities for associated re-scaled random
walks. Second, we will apply the local limit theorem to compute, and hence identify,
the first passage time density for Brownian motion with drift.

Remark 16.1. In physical sciences the pdf, when it exists, of the first passage time
to a point y is sometimes referred to as “breakthrough curve” at y. The first passage
time to a > 0 distribution for Brownian motion with driftμ > 0 is also referred to as
the inverse-Gaussian distribution with parameters a, μ. It models the concentration
of particles which arrive at y for the first time at time t as a function of t. By removal
of particles upon their arrival at y, one may empirically estimate the first passage
time density of a sufficiently dilute initial injection. Apart from such modeling and
prediction considerations, the first passage times play a basic role in various aspects
of the mathematical analysis of Brownian motion and related stochastic processes.

The two-fold goals of this chapter rely on a “histogram approximation” of
distributions of a sequence of discrete random variables Xn (n ≥ 1) to derive its
convergence in distribution. For later purposes we permit random variables which
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192 16 First Passage for Brownian Motion with Drift

are possibly defective, i.e., allow P(Xn ∈ R) ≤ 1. Let the set of values of Xn be
contained in a discrete set Ln = {x (n)i : i ∈ In}, where In is a countable index set.

Write p(n)i = P(Xn = x (n)i ).

Assume that there exist non-overlapping intervals A(n)
i of lengths |A(n)

i | > 0,

i ∈ In , which partition an interval J ⊂ R such that (i) x (n)i ∈ A(n)
i , (ii) δn :=

sup{|A(n)
i | : i ∈ In} → 0 as n →∞, (iii) for every t ∈ J outside a set of Lebesgue

measure zero, and with the index i = i(n, t) such that t ∈ A(n)
i , one has

p(n)i(n,t)

/|A(n)
i(n,t)| −→ f (t) as n →∞, (16.1)

and (iv) 1 ≥ αn :=∑
i∈In

p(n)i → α := ∫
J f (t)dt > 0 as n →∞.

Proposition 16.1 (Local Limit Theorem). Under the assumptions (i)–(iv) above,
∑
{i∈In :x (n)i ≤t} p(n)i → ∫

J∩(−∞,t] f (y)dy for every t ∈ J . In particular if Xn are

proper random variables, i.e.,
∑

i∈In
p(n)i = 1, then Xn converges in distribution to

the random variable with density f .

Proof. On J define the density function fn(t) = p(n)i /|A(n)
i | if t ∈ A(n)

i (t ∈ J ). By
assumption (iv) and Scheffé’s theorem,1

∫
J | fn(y) − f (y)|dy → 0. On the other

hand, since p(n)i = ∫
A(n)i

fn(y)dy for all i ∈ In ,

∣
∣
∣
∣
∣
∣
∣

∑

{i∈In :x (n)i ≤t}
p(n)i −

∫

J∩(−∞,t]
fn(y)dy

∣
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣A(n)

i(n,t)

∣
∣
∣ | fn(t)| ≤ δn| fn(t)| −→ 0.

�
Remark 16.2. In the commonly stated version of Scheffé’s theorem, one would
require αn = α for all n, instead of condition (iv). But dividing p(n)i by αn and f (t)
by α, this requirement is easily met. Thus the proof of Proposition 16.1 goes through
with this minor modification.

Remark 16.3. Note also that this extends with virtually the same proof to higher
dimensions Rk where A(n)

i is a rectangle of positive k-dimensional volume |A(n)
i |.

We have seen in Chapter 3, relation (3.7), that for a simple symmetric random
walk starting at zero, the first passage time Ty to the state y �= 0 has the distribution

P(Ty = N ) = |y|
N

( N
N+y

2

)
1

2N
, N = |y|, |y| + 2, |y| + 4, . . . . (16.2)

1See BCPT pp. 14–15.
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To apply the local limit theory take Xn = 1
n · T[√nz], z �= 0 fixed, In :=

{0, 1, 2, . . . }, x (n)i = |[√nz]|+2i
n , A(n)

i = ( 1
n (|[
√

nz]| + 2i − 2), 1
n (|[
√

nz]| + 2i)] for

i ≥ 1, A(n)
0 = (0, 1

n |[
√

nz]|]. Then J = (0,∞). Note that if t > 0 and n ≥ 1, then

t ∈ A(n)
i means 1

2 (nt − |[√nz]|) ≤ i < 1
2 (nt − |[√nz]|)+ 1, so that i(n, t) differs

from 1
2 (nt − |[√nz]) by at most 1. Also, p(n)i ≡ P(Xn = x (n)i ) = P(T[√nz] =

|[√nz]| + 2i) and fn(t) = p(n)i /|A(n)
i | = n

2 p(n)i with i = i(n, t). To check (16.1)
let y = [√nz], N = |[√nz]| + 2i(n, t) in (16.2). Observe that N differs from nt by
at most 2, so that y2/N → z2/t , and both N and N ± y tend to infinity as n →∞.
Thus by Stirling’s formula,

fn(t) = n

2
· |y|

N

( N
N+y

2

)

2−N

= n · |y|
2(2π)1/2 N

e−N N N+ 1
2 2−N

e−(N+y)/2
(

N+y
2

)(N+y)/2+ 1
2

e−(N−y)/2
(

N−y
2

)(N−y)/2+ 1
2

×(1+ o(1))

= n · 2|y|
(2π)1/2 N 3/2

(
1+ y

N

)−(N+y)/2− 1
2
(

1− y

N

)−(N−y)/2− 1
2
(1+ o(1))

= |z|√
2π t3/2

(
1+ y

N

)−(N+y)/2 (
1− y

N

)−(N−y)/2
(1+ o(1)), (16.3)

where o(1) denotes a quantity whose magnitude is bounded above by a quantity
εn(t, z) that depends only on n, t, z and which goes to zero as n →∞. Also,

log

[
(

1+ y

N

)− N+y
2

(
1− y

N

)− N−y
2

]

= −N + y

2

[
y

N
− y2

2N 2 + O

( |y|3
N 3

)]

+N − y

2

[
y

N
+ y2

2N 2 + O

( |y|3
N 3

)]

= − y2

2N
+ θ(N , y)→−z2/2t. (16.4)

Here |θ(N , y)| ≤ n−1/2c(t, z) and c(t, z) is a constant depending only on t and z.
Combining (16.3) and (16.4) and Corollary 7.14, we arrive at the following.

Proposition 16.2. The histogram approximation (16.3) converges to the density of
the first passage time τz to z of standard Brownian motion starting at zero.

lim
n→∞ fn(t) = |z|√

2π t3/2
exp

{

− z2

2t

}

. (16.5)
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In particular

P(τ (n)z ≤ t)→ P(τz ≤ t).

Remark 16.4. The first passage time distribution for the slightly more general case
of Brownian motion {Xt : t ≥ 0} with zero drift and diffusion coefficient σ 2 > 0,
starting at the origin, may be obtained by applying the formula for the standard
Brownian motion {(1/σ)Xt : t ≥ 0}. In particular, the first passage time to z for
{Xt : t ≥ 0} is the first passage time to z/σ for the standard Brownian motion. So
the probability density function fσ 2(t) of τz is therefore given as follows.

Proposition 16.3 (First Passage Time to z for σ B). The first passage time to z for
Brownian motion with zero drift and diffusion coefficient σ > 0 has density

fσ 2(t) = |z|√
2πσ 2t3/2

e
− z2

2σ2 t , t > 0. (16.6)

Note that for large t the tail of the pdf fσ 2(t) is of the order of t−3/2. Therefore,
although {Xt : t ≥ 0} will reach z in a finite time with probability 1, the expected
time is infinite (Exercise 1).

Consider now the first passage time distribution for a Brownian motion {Xt : t ≥
0} with a nonzero drift μ and diffusion coefficient σ 2 that starts at the origin. One
may note that if, for example, μ > 0, then by the transience property obtained in
the previous chapter (or simply by the SLLN), there is a positive probability that
the process may not ever reach a given z < 0, i.e., one may have a defective first
passage time distribution in the sense that P(τz <∞) = ∫∞

0 fσ 2,μ(t)dt < 1.
Although the random walk asymptotics for the proof will follow from the local

limit Proposition 16.1 as above, at this stage one is unable to compare the limit to
a previous computation for Brownian motion having nonzero drift. To make this
connection we will anticipate the FCLT from the next Chapter 17 which shows how
functionals (such as first passage times) of the random walk converge to those of the
Brownian motion (Also see Remark 1.4 and Remark 16.5.)

Proposition 16.4 (First Passage Time Distribution Under Drift). Let σ > 0, z ∈ R.

Also let μ ∈ R and let {Bt : t ≥ 0} The first passage time τz of the diffusion
{Xt := μt + σ Bt : t ≥ 0} starting at zero with drift μ and diffusion coefficient σ 2

at z has a possibly defective pdf given by

fσ 2,μ(t) =
|z|

(2πσ 2)1/2t3/2 exp

{

− 1

2σ 2t
(z − μt)2)

}

(t > 0). (16.7)

Proof. Using Corollary 17.6 from Chapter 7, the polygonal process {X̃ (n)
t : t ≥ 0}

corresponding to the simple random walk Sm,n = Z1,n +· · ·+ Zm,n , S0,n = 0, with
P(Zm,n = 1) = pn = 1

2 + μ/(2σ
√

n), converges in distribution to {Wt = Xt/σ :
t ≥ 0}, which is a Brownian motion with drift μ/σ and diffusion coefficient 1. On
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the other hand, writing Ty,n for the first passage time of {Sm,n : m = 0, 1, . . .} to y,
one has, by relation (3.4) of Chapter 5,

P(Ty,n = N ) = |y|
N

( N
N+y

2

)

p(N+y)/2
n q(N−y)/2

n

= |y|
N

( N
N+y

2

)

2−N
(

1+ μ

σ
√

n

)(N+y)/2 (

1− μ

σ
√

n

)(N−y)/2

= |y|
N

( N
N+y

2

)

2−N
(

1− μ2

σ 2n

)N/2

×
(

1+ μ

σ
√

n

)y/2 (

1− μ

σ
√

n

)−y/2

. (16.8)

For N �= 0, the first passage time to w for {X̃ (n)
t : t ≥ 0} is (asymptotically) the

same as 1
n T[w√n],n . Therefore, one may seek to apply Proposition 16.1 with Xn =

1
n T[w√n],n , and x (n)i , A(n)

i , i(n, t) as above, but with z replaced by w. Also, p(n)i here
is given by (16.8). For y = [w√n] for some given nonzero w, and N = [nt] for
some given t > 0, one has

(

1− μ2

σ 2n

)N/2 (

1+ μ

σ
√

n

)y/2 (

1− μ

σ
√

n

)−y/2

=
(

1− μ2

σ 2n

)nt (

1+ μ

σ
√

n

)w
√

n/2 (

1− μ

σ
√

n

)−w√n/2

(1+ o(1))

= exp

{

− tμ2

σ 2

}

exp
{μw

2σ

}
exp

{μw

2σ

}
(1+ o(1))

= exp

{

− tμ2

σ 2 +
μw

σ

}

(1+ o(1)), (16.9)

where o(1) represents a term that goes to zero as n → ∞. The first passage time
τz to z for {Xt : t ≥ 0} is the same as the first passage time to w = z/σ for the
process {Wt : t ≥ 0} = {Xt/σ : t ≥ 0}. It follows from the hitting time formulae in
Proposition 7.21 of Chapter 7, also see Chapter 7, Exercise 15, that if

i. μ < 0 and z > 0 or if ii. μ > 0 and z < 0,

then there is a positive probability that the process {Wt : t ≥ 0} will never reach
w = z/σ (i.e., τz = ∞), but nonetheless one has limn→∞ P(Xn < ∞) ≡
limn→∞ P(Ty,n < ∞) = P(τz < ∞), with y = [w√n] (Exercise 3). By
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Proposition 16.1 this is adequate for the local limit theory. Moreover, in view

of (16.3), (16.4), (16.8) and (16.9) we have for x (n)i = [√nw]+2i
n ,

lim
n→∞ fn(t) = |w|√

2π t3/2
e−

w2
2t · e− tμ2

2σ2+μw
σ . (16.10)

Thus the probability density function of τz is given by

fσ 2,μ(t) =
|z|

(2πσ 2)1/2t3/2 exp

{
μz

σ 2 −
z2

2σ 2t
− μ2

2σ 2 t

}

(16.11)

as asserted. �
Observe that letting p(t; 0, y) denote the pdf of the normal distribution Φσ 2,μ of

the position Xt at time t , (16.10) can be expressed as

fσ 2,μ(t) =
|z|
t

p(t; 0, z). (16.12)

Also as mentioned before, the integral of fσ 2,μ(t) is less than 1 if either

i. μ > 0, z < 0 or i i. μ < 0, z > 0.

In all other cases, Proposition 16.4 provides a proper probability density function.
It is also noteworthy that from the first passage time distribution to a point for

one-dimensional Brownian motion, one may readily obtain the hitting time of a line
by a two-dimensional Brownian motion and, more generally, the hitting time of a
(k − 1)−dimensional hyperplane by a k-dimensional Brownian motion; Exercise 2.

Note that we have also obtained the distribution of max0≤t≤T Xt as follows.

Corollary 16.5. Under the conditions of Proposition 16.4 one has the following
immediate formula.

P( max
0≤t≤T

Xt > z) =
∫ T

0

|z|
(2πσ 2)1/2t3/2

exp

{

− 1

2σ 2t
(z − μt)2)

}

dt, z ≥ x .

Recalling the transience of Brownian motion with drift obtained in Chapter 7 let
us also note the following.

Proposition 16.6 (Time of Last Visit to Zero for Brownian Motion with Drift). Fix
μ ∈ R, μ �= 0, and σ 2 > 0 and define

Γ0 := sup{t : σ Bt + μt = 0}.

Then, Γ0 has the pdf μ

σ
√

2π t
3
2

e
− μ2

2σ2t , t ≥ 0.
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Proof. Without essential loss of generality, let μ > 0, First recall that the process
defined by

Zt = t B 1
t
, t > 0, Z0 = 0,

is distributed as standard Brownian motion (using the symmetry of Brownian
motion). Now observe that for σ 2 > 0,

Γ0 := sup{t : σ Bt + μt = 0} = sup{t : 1

t
Bt + μ

σ
= 0}

= sup{t : Z 1
t
= −μ

σ
} = 1

inf{t : Zt = −μ
σ
} . (16.13)

An explicit formula for the distribution of τ x
y was obtained in Corollary 7.14 from

which the distribution of Γ0 follows. (Exercise 4). �
For the record, the local (central) limit theorem for simple symmetric random

walk may be expressed as the following useful Gaussian approximation (Exer-
cise 8).

Proposition 16.7. Let Sn, n = 0, 1, 2, . . . denote the simple symmetric random

walk. Then, for n, j both even or both odd,
√

n
2 P(Sn = j) = 1√

2π
e
− 1

2 (
j√
n
)2

(1 +
o(1)).

The following general remark is applicable to this chapter and elsewhere.

Remark 16.5. Suppose X (n), n ≥ 1, is a sequence of processes converging in
distribution to a stochastic process X (on C[0, 1] or C[0,∞)), and g is a functional
which is continuous a.s. with respect to the distribution of X . Then g(X (n))

converges in distribution to g(X), by the Mann-Wald theorem (Proposition 17.4).
If by some means (e.g., a local limit theorem) one is able to compute the limit
of the distribution function of g(X (n)), then, in view of weak convergence, it is
the distribution function of g(X) at all points of continuity of the latter. Since this
set of continuity points is dense in R (or R

k if g is R
k−valued), and since the

distribution function of g(X) is right-continuous, it must equal the right-continuous
limit everywhere.

Exercises

1. Show that Eτz = ∞, where τz is the first passage time from Brownian motion
with zero drift and diffusion coefficient σ 2 > 0.

2. (i) Let L(a, b) denote the line {(x, y) ∈ R
2 : y = ax + b} and let B

denote a 2-dimensional Brownian motion starting at the origin. Compute
the distribution of τ := inf{t : Bt ∈ L(a, b)}.
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(ii) Generalize (i) to the hitting time of the hyperplane H(a1, . . . , ak, b) =
{(x1, . . . , xk) :∑k

j=1 a j x j = b} by a k-dimensional Brownian motion.
3. To complete the proof of Proposition 16.4, show that limn→∞ P(Xn < ∞) ≡

limn→∞ P(T[w√n,n <∞) = P(τz <∞), with w = z/σ .[Hint: The limit can be
computed, without presuming the FCLT. The limit, with x = 0, d = z, μ < 0, is
the same as

∫∞
0 f (t)dt , as required by the hypothesis of the local limit theorem

(Proposition 16.4), may be proved by a direct integration of (16.7).]
4. (i) Complete the proof of Proposition 16.6 for the distribution of the time Γ0

of the last visit to 0 by a Brownian motion with drift μ �= 0 and diffusion
coefficient σ 2 defined in (16.13).

(ii) Show that EΓ0 = ∞.
5. Let {Bt : t ≥ 0} be standard Brownian motion starting at 0 and let a, b > 0.

(i) Calculate the probability that −at < Bt < bt for all sufficiently large t .
(ii) Calculate the probability that {Bt : t ≥ 0} last touches the line y = −at

instead of y = bt . [Hint: Consider the process {Zt : t ≥ 0} defined by
Z0 = 0, Zt = t B1/t for t > 0.]

6. Let {(B(1)
t , B(2)

t ) : t ≥ 0)} be a two-dimensional standard Brownian motion
starting at (0, 0). Let τy = inf{t ≥ 0 : B(2)

t = y}, y > 0. Show that B(1)
τy has a

symmetric Cauchy distribution. [Hint: Condition on τy and evaluate the integral
by substituting u = (x2 + y2)/t.]

7. Let τa be the first passage time to a for a standard Brownian motion starting at 0
with zero drift.

(i) Verify that Eτa is not finite.
(ii) Show that (1/n)τ[a√n] ⇒ τa in distribution as n → ∞. [Hint: Use

the continuity theorem2 for Laplace transforms and Proposition 7.15. The
determination of the constant k > 0 is not required here.]

8. Provide a proof for Proposition 16.7. [Hint: Use Stirling formula approxima-

tions to get in the even parity case that
√

2n
2

( 2n
n+ j

)
2−2n = 1√

2π
( n2

(n+ j)(n− j) )
1
2

1
(1+ j

n )
n+ j (1− j

n )
n− j

(1+ o(1)) followed by grouping terms in the Taylor expansion

of the logarithm to get (n + j) ln(1+ j
n )+ (n − j) ln(1− j

n ) = j2

n O(1).]

2See Feller (1971), p. 431.



Chapter 17
The Functional Central Limit Theorem
(FCLT)

The functional central limit theorem, or invariance principle, refers to con-
vergence in distribution of centered and rescaled random walks having finite
second moments to Brownian motion. This provides a tool for computing
asymptotic limits of functionals of rescaled random walks by analyzing
the corresponding functional of Brownian motion. The term “invariance
principle”refers to the invariance of the distribution of the limit, namely
Brownian motion, regardless of the specific random walk increments, with
a finite second moment. The proof given here is by a beautiful technique
of Skorokhod in which the random walk paths are embedded within the
Brownian motion.

Consider a sequence of i.i.d. random variables {Zm}∞m=1 and assume for the present
that EZm = 0 and Var Zm = σ 2 > 0. Define the random walk

S0 = 0, Sm = Z1 + · · · + Zm (m = 1, 2, . . .). (17.1)

Define, for each value of the scale parameter n ≥ 1, the stochastic process

X (n)
t = S[nt]√

n
(t ≥ 0), (17.2)

where [nt] is the integer part of nt . The process {S[nt] : t ≥ 0} records the discrete
time random walk {Sm : m = 0, 1, 2, . . .} on a continuous time scale such that in
one unit (t = 1) of continuous time there will be contributions from n discrete time
units. The process X (n) := {X (n)

t : t ≥ 0} = {(1/√n)S[nt] : t ≥ 0} further scales
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distance in such a way that one unit of distance in the new scale equals
√

n spatial
units used for the random walk. This is a convenient normalization since (for large
n)

EX (n)
t = 0, Var X (n)

t = [nt]σ 2

n
# σ 2t. (17.3)

Since the sample paths of X (n) = {X (n)
t : t ≥ 0} have jumps (though small

for large n) and are, therefore, discontinuous, it is technically more convenient to
linearly interpolate the random walk between one jump point and the next, using
the same space-time scales as used for {X (n)

t : t ≥ 0}. The resulting polygonal
process X̃ (n) := {X̃ (n)

t : t ≥ 0} is formally defined by (see Figure 17.1)

X̃ (n)
t = S[nt]√

n
+ (nt − [nt]) Z[nt]+1√

n
t ≥ 0. (17.4)

B
(n)
t = X̃

(n)
t = S[nt]√

n
+ (nt − [nt])Z[nt]+1√

n

−3√
n

−2√
n

−1√
n

0√
n

1√
n

2√
n

3√
n

1
n

2
n

3
n

4
n

5
n

6
n

t

S3√
n

Fig. 17.1 Rescaled Simple Random Walk
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In this way, just as for the limiting Brownian motion process, the paths of {X̃ (n)
t :

t ≥ 0} are continuous, i.e., X̃ (n) takes its values in the same space C[0,∞) as the
Brownian motion process.

In any given interval [0, T ] the maximum difference between values of the two
processes {X (n)

t : t ≥ 0} and {X̃ (n)
t : t ≥ 0} cannot exceed

εn(T ) = max

( |Z1|√
n
,
|Z2|√

n
, . . . ,

|Z[nT ]+1|√
n

)

.

Now, for each δ > 0,

P(εn(T ) > δ) = P
(|Zm | > δ

√
n for some m = 1, 2, . . . , [nT ] + 1

)

≤ ([nT ] + 1)(P(|Z1| > δ
√

n)) = ([nT ] + 1)E1([Z1|>δ√n] (17.5)

≤ ([nT ] + 1) · E(1[|Z1|>δ√n]
Z2

1

δ2n
) = [nT ] + 1

δ2n
E(1[|Z1|>δ√n]Z2

1)→ 0

(17.6)

by the dominated convergence theorem. Thus, one arrives at the following useful
fact.

Proposition 17.1. If E|Z1|2 <∞, then for any T > 0, one has for arbitrary δ > 0,

P( sup
0≤t≤T

|X (n)
t − X̃ (n)

t | > δ) = P(εn(T ) > δ)→ 0 as n →∞. (17.7)

Thus, on any closed and bounded time interval the behaviors of {X (n)
t : t ≥ 0} and

{X̃ (n)
t : t ≥ 0} are the same in the large-n limit.
Observe that given any finite set of time points 0 < t1 < t2 < · · · < tk ,

the joint distribution of (X (n)
t1 , X (n)

t2 , . . . , X (n)
tk ) converges to the finite-dimensional

distribution of (Xt1 , Xt2 , . . . , Xtk ), where {Xt = σ Bt : t ≥ 0} is a one-dimensional
Brownian motion with zero drift and diffusion coefficient σ 2. To see this, note that
X (n)

t1 , X (n)
t2 − X (n)

t1 , . . . , X (n)
tk − X (n)

tk−1
are independent random variables that by the

classical central limit theorem converge in distribution to Gaussian random variables
with zero means and variance t1σ 2, (t2 − t1)σ 2, . . . , (tk − tk−1)σ

2. That is to say,
the joint distribution of (X (n)

t1 , X (n)
t2 − X (n)

t1 , . . . , X (n)
tk − X (n)

tk−1
) converges to that of

(Xt1 , Xt2 − Xt1 , . . . , Xtk − Xtk−1). By a linear transformation, one gets the desired

convergence of finite-dimensional distributions of {X (n)
t : t ≥ 0}.

Many of the events of interest are infinite-dimensional, e.g., [max0≤t≤T Xt ≥
a]. For convergence of probabilities of such events the convergence of finite-
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dimensional distributions is inadequate.1 A metric for C[0, T ] can be defined
by dT (x, y) = max0≤t≤T |x(t) − y(t)|, and a metric for C[0,∞) is d(x, y) =
∑∞

N=1 2−N dN (x,y)
1+dN (x,y)

. Convergence in the latter metric d(x, y) means uniform
convergence on compact subintervals [0, N ] for all N ≥ 0. The Borel σ -fields for
these metrics coincide with the σ -fields generated by finite-dimensional events.

A precise statement of the functional central limit theorem (FCLT) follows.
Because the limiting process, namely Brownian motion, is the same for all
increments {Zm}∞m=1 as above, the limit Theorem 17.2 is also referred to as the
Invariance Principle, i.e., invariance with respect to the distribution of the increment
process.

Theorem 17.2 (The Functional Central Limit Theorem). Suppose {Zm : m =
1, 2, . . .} is an i.i.d. sequence with EZm = 0 and variance σ 2 > 0. Then as n →∞
the stochastic processes {X̃ (n)

t : t ≥ 0} converge in distribution to a Brownian
motion starting at the origin with zero drift and diffusion coefficient σ 2.

There are two distinct types of applications of Theorem 17.2. In the first type
it is used to calculate probabilities of infinite-dimensional events associated with
Brownian motion by directly computing limits of distributions of functionals of the
scaled simple random walks. In the second type it (invariance) is used to calculate
asymptotics of a large variety of partial sum processes, since the asymptotic
probabilities for these are the same as those of simple random walks. Several such
examples are considered in the next two chapters. The following is another useful
feature of weak convergence for computations.

Proposition 17.3. Under the conditions of the FCLT, if g : C[0,∞) → R is
continuous, then the sequence of real-valued random variables g(X̃ (n)), n ≥ 1,
converges in distribution to g(X).

Proof. For each bounded continuous function f on R the map f ◦ g is also
a bounded continuous function on C[0,∞). Thus the result follows from the
meanings of weak convergence on the respective spaces C[0,∞) and R. �
Example 1. Consider the functional g(ω) := max0≤t≤1 ω(t), ω ∈ C[0,∞). As
an application of the FCLT one may obtain the following limit distribution: Let
Z1, Z2, . . . be an i.i.d. sequence of real-valued random variables standardized to
have mean zero, variance one. Let Sn := Z1 + · · · + Zn, n ≥ 1. Then g(X̃ (n)), and
therefore max0≤t≤1 X (n)

t , converges in distribution to max0≤t≤1 Bt , where {Bt : t ≥
0} is standard Brownian motion starting at 0. Thus

lim
n→∞ P(n−

1
2 max

1≤k≤n
Sk ≥ a) = lim

n→∞ P( max
0≤t≤1

X (n)
t ≥ a)

1The convergence in distribution of processes with sample paths in metric spaces such as S =
C[0, T ] and S = C[0,∞) is fully developed in BCPT pp.135–157.
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= lim
n→∞ P(g(X̃ (n)) ≥ a)

= P( max
0≤t≤1

Bt ≥ a). (17.8)

For this calculation to be complete one needs to check that the Wiener measure of
the boundary of the set G = {ω ∈ C[0,∞) : max0≤t≤1 ω(t) ≥ a} is zero. This
follows from the fact that P(max0≤t≤1 Bt = a) = 0 (see Corollary 7.12). One
may note that another point of view is possible in which the FCLT is used to obtain
formulae for Brownian motion by making the special choice of simple symmetric
random walk for Z1, Z2, . . . , do the combinatorics and then pass to the appropriate
limit. Both of these perspectives will be illustrated in this chapter.

It is often useful to recognize that it is sufficient that g : C[0,∞)→ R be only
a.s. continuous with respect to the limiting distribution for the FCLT to apply, i.e.,
for the convergence of g(X̃ (n)) in distribution to g(X). That is,2

Proposition 17.4. If X̃ (n) := {X̃ (n)
t } converges in distribution to X := {Xt : t ≥ 0}

and if P(X ∈ Dg) = 0, where Dg = {x ∈ C[0,∞) : g is discontinuous at x}, then
g(X̃ (n)) converges in distribution to g(X).

Proof. Let Qn be the distribution of X̃ (n) and Q that of X . Let g be a function on
C[0,∞) into a metric space S. Let μn = Qn ◦ g−1, μ = Q ◦ g−1. By Alexandrov’s
theorem 3 it is enough to show that for every closed set F one has lim supn μn(F) ≤
μ(F). But for any closed set F , g−1(F) ⊂ g−1(F) ⊂ Dg ∪ g−1(F), where the
overbar denotes the closure of the set. By the weak convergence of Qn , one has
lim supn μn(F) = lim supn Qn(g−1 F) ≤ lim supn Qn(g−1(F)) ≤ Q(g−1(F)) =
Q(Dg ∪ g−1(F)) ≤ μ(F). �

Let us now turn to a beautiful result of Skorokhod4 representing a general
random walk (partial sum process) as values of a Brownian motion at a sequence
of successive stopping times (with respect to an enlarged filtration). This will be
followed by a proof of the functional central limit theorem (invariance principle)
based on the Skorokhod embedding representation. Recall that for c < x < d, (see
Chapter 7, Proposition 7.18),

P(τ x
d < τ x

c ) =
x − c

d − c
, (17.9)

where τ x
a := τ a(Bx ) ≡ inf{t ≥ 0 : Bx

t = a}. Also, as calculated in Chapter 13,
Example 2,

2This is an early result in the theory of weak convergence sometimes referred to as the Mann-Wald
theorem.
3See BCPT p.137.
4Skorokhod (1965).
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E(τ x
c ∧ τ x

d ) = (d − x)(x − c). (17.10)

Write τa = τ 0
a , B0 = B = {Bt : t ≥ 0}. Consider now a two-point distribution Fu,v

with support {u, v}, u < 0 < v, having mean zero. That is, Fu,v({u}) = v/(v − u)
and Fu,v({v}) = −u/(v − u). It follows from (17.9) that with τu,v = τu ∧ τv , Bτu,v

has distribution Fu,v and, in view of (17.10),

Eτu,v = −uv = |uv|. (17.11)

In particular, the random variable Z := Bτu,v with distribution Fu,v is naturally
embedded in the Brownian motion. We will see by the theorem below that any
given non-degenerate distribution F with mean zero may be similarly embedded by
randomizing over such pairs (u, v) to get a random pair (U, V ) such that BτU,V has
distribution F , and EτU,V =

∫
(−∞,∞)

x2 F(dx), the variance of F . Indeed, this is
achieved by the distribution γ of (U, V ) on (−∞, 0)× (0,∞) given by

γ (du dv) = θ(v − u)F−(du)F+(dv), (17.12)

where F+ and F− are the restrictions of F to (0,∞) and (−∞, 0), respectively.
Here θ is the normalizing constant given by

1 = θ

[(∫

(0,∞)

vF+(dv)
)

F−((−∞, 0))+
(∫

(−∞,0)
(−u)F−(du)

)

F+((0,∞))

]

,

or, noting that the two integrals are each equal to 1
2

∫∞
−∞ |x |F(dx) since the mean of

F is zero, one has

1/θ =
(

1

2

∫ ∞

−∞
|x |F(dx)

)

[1− F({0})]. (17.13)

Let (Ω,F , P) be a probability space on which are defined (1) a standard Brownian
motion B ≡ B0 = {Bt : t ≥ 0}, and (2) a sequence of i.i.d. pairs (Ui , Vi )

independent of B, with the common distribution γ above. Let Ft := σ {Bs : 0 ≤
s ≤ t} ∨ σ {(Ui , Vi ) : i ≥ 1}, t ≥ 0. Define the {Ft : t ≥ 0}-stopping times

T0 ≡ 0, T1 := inf{t ≥ 0 : Bt = U1 or V1},
Ti+1 := inf{t > Ti : Bt = BTi +Ui+1 or BTi + Vi+1} (i ≥ 1). (17.14)

Theorem 17.5 (Skorokhod Embedding). Assume that F has mean zero and finite
variance. Then (a) BT1 has distribution F , and BTi+1 − BTi (i ≥ 0) are i.i.d. with
common distribution F , and (b) Ti+1 − Ti (i ≥ 0) are i.i.d. with
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E (Ti+1 − Ti ) =
∫

(−∞,∞)

x2 F(dx). (17.15)

Proof. (a) Given (U1, V1), the conditional probability that BT1 = V1 is −U1
V1−U1

.
Therefore, for all x > 0,

P
(
BT1 > x

) = θ

∫

{v>x}

∫

(−∞,0)

−u

v − u
· (v − u)F−(du)F+(dv)

= θ

∫

{v>x}

{∫

(−∞,0)
(−u)F−(du)

}

F+(dv)

=
∫

{v>x}
F+(dv), (17.16)

since
∫
(−∞,0)(−u)F−(du) = 1

2

∫ |x |F(dx) = 1/θ . Thus the restriction of the
distribution of BT1 on (0,∞) is F+. Similarly, the restriction of the distribution of
BT1 on (−∞, 0) is F−. It follows that P(BT1 = 0) = F({0}). This shows that BT1

has distribution F . Next, by the strong Markov property, the conditional distribution
of B+Ti

≡ {BTi+t : t ≥ 0}, given FTi , is PBTi
(where Px is the distribution of Bx ).

Therefore, the conditional distribution of B+Ti
− BTi ≡ {BTi+t − BTi ; t ≥ 0}, given

FTi , is P0. In particular, Yi := {(Tj , BTj ) : 1 ≤ j ≤ i} and Xi := B+Ti
− BTi are

independent. Since Yi and Xi are functions of B ≡ {Bt : t ≥ 0} and {(U j , Vj ):
1 ≤ j ≤ i}, they are both independent of (Ui+1, Vi+1). Since τ (i+1) := Ti+1 − Ti

is the first hitting time of {Ui+1, Vi+1} by Xi , it now follows that (1) (Ti+1 − Ti ≡
τ (i+1), BTi+1 − BTi ≡ Xi

τ (i+1) ) is independent of {(Tj , BTj ) : 1 ≤ j ≤ i}, and
(2) (Ti+1 − Ti , BTi+1 − BTi ) has the same distribution as (T1, BT1).

(b) It remains to prove (17.15). But this follows from (17.11):

ET1

= θ

∫

(0,∞)

∫

(−∞,0)
(−uv)(v − u)F−(du)F+(dv)

= θ

[∫

(0,∞)
v2 F+(dv) ·

∫

(−∞,0)
(−u)F−(du)+

∫

(−∞,0)
u2 F−(du) ·

∫

(0,∞)
vF+(dv)

]

=
∫

(0,∞)
v2 F+(dv)+

∫

(−∞,0)
u2 F−(du) =

∫

(−∞,∞)
x2 F(dx).

�
We now present an elegant proof of Donsker’s invariance principle, or functional

central limit theorem, i.e., Theorem 17.2, using Theorem 17.5. For this, consider
a sequence of i.i.d. random variables Zi (i ≥ 1) with common distribution having
mean zero and variance 1. Let Sk = Z1 + · · · + Zk (k ≥ 1), S0 = 0, and define the
polygonal random function S(n) on [0, 1] as follows:
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S(n)t := Sk−1√
n
+ n

(

t − k − 1

n

)
Sk − Sk−1√

n

for t ∈
[

k−1
n , k

n

]
, 1 ≤ k ≤ n. (17.17)

That is, S(n)t = Sk√
n

at points t = k
n (0 ≤ k ≤ n), and t $→ S(n)t is linearly

interpolated between the endpoints of each interval
[

k−1
n , k

n

]
. In this notation,

Theorem 17.2 asserts that S(n) converges in distribution to the standard Brownian
motion, as n →∞.

Proof. Let Tk , k ≥ 1, be as in Theorem 17.5, defined with respect to a standard
Brownian motion {Bt : t ≥ 0}. Then the random walk {Sk : k = 0, 1, 2, . . . } has
the same distribution as {S̃k := BTk : k = 0, 1, 2, . . . }, and therefore, S(n) has the

same distribution as S̃(n) defined by S̃(n)k/n := n− 1
2 BTK (k = 0, 1, . . . , n) and with

linear interpolation between k/n and (k + 1)/n (k = 0, 1, . . . , n− 1). Also, define,

for each n = 1, 2, . . . , the standard Brownian motion B̃(n)
t := n− 1

2 Bnt , t ≥ 0. We
will show that

max
0≤t≤1

∣
∣
∣S̃

(n)
t − B̃(n)

t

∣
∣
∣ −→ 0 in probability as n →∞, (17.18)

which implies the desired weak convergence. Now

max
0≤t≤1

∣
∣
∣S̃

(n)
t − B̃(n)

t

∣
∣
∣

≤ n−
1
2 max

1≤k≤n

∣
∣BTk − Bk

∣
∣

+ max
0≤k≤n−1

{

max
k
n≤t≤ k+1

n

∣
∣
∣S̃

(n)
t − S̃(n)k/n

∣
∣
∣+ n−

1
2 max

k≤t≤k+1
|Bt − Bk |

}

= I (1)n + I (2)n + I (3)n , say. (17.19)

Now, writing Z̃k = S̃k − S̃k−1, it is simple to check that as n →∞,

I (2)n ≤ n−
1
2 max{|Z̃k | : 1 ≤ k ≤ n} → 0 in probability,

I (3)n ≤ n−
1
2 max

0≤k≤n−1
max{|Bt − Bk | : k ≤ t ≤ k + 1} → 0 in probability,

using the Chebyshev inequality P(|Z | > ε
√

n) ≤ (nε2)−1
EZ21[|Z |>ε√n] → 0 as

n →∞ if EZ2 <∞, whatever be ε > 0.
Hence we need to prove, as n →∞,
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I (1)n := n−
1
2 max

1≤k≤n

∣
∣BTk − Bk

∣
∣ −→ 0 in probability. (17.20)

Since Tn/n → 1 a.s., by the SLLN, it follows that (Exercise 8)

εn := max
1≤k≤n

∣
∣
∣
∣
Tk

n
− k

n

∣
∣
∣
∣ −→ 0 as n →∞ (almost surely). (17.21)

In view of (17.21), there exists for each ε > 0 an integer nε such that P(εn <

ε) > 1− ε for all n ≥ nε. Hence with probability greater than 1− ε one has for all
n ≥ nε the estimate

I (1)n ≤ max
|s−t |≤nε,

0≤s,t≤n+nε

n−
1
2 |Bs − Bt | = max

|s−t |≤nε,
0≤s,t≤n(1+ε)

∣
∣
∣B̃

(n)
s/n − B̃(n)

t/n

∣
∣
∣

= max
|s′−t ′|≤ε,

0≤s′,t ′≤1+ε

∣
∣
∣B̃

(n)
s′ − B̃(n)

t ′
∣
∣
∣

d= max
|s′−t ′|≤ε,

0≤s′,t ′≤1+ε

|Bs′ − Bt ′ |

−→ 0 as ε ↓ 0,

by the continuity of t → Bt . Given δ > 0 one may then choose ε = εδ such that for
all n ≥ n(δ) := nεδ , P(I (1)n > δ) < δ. Hence I (1)n → 0 in probability. �

The following modification of Theorem 17.2 will be useful in obtaining the
distribution of functionals of Brownian motion with drift parameter μ as limits
of asymmetric simple random walk, such as Proposition 7.21 in the preceding
chapter. The proof is essentially the same. In preparation, for each n ≥ 1, let
Zk,n, k = 1, . . . , n be an i.i.d. sequence of ±1-valued Bernoulli variables with
P(Zk,n) = 1) = 1 − P(Zk,n = −1) = 1

2 + μ

2
√

n
, k = 1, . . . , n. In particular,

EZk,n = μ√
n

, and E(Zk,n− μ√
n
)2 = 1− μ2

n . Let Sk,n = Z1,n+· · ·+Zk,n, 1 ≤ k ≤ n,

and S0,n = 0. Next define define polygonal random function S(n) on [0, 1] by linear
interpolation as before:

S(n)t := Sk−1,n√
n
+ n

(

t − k − 1

n

)
Sk,n − Sk−1,n√

n

for t ∈
[

k−1
n , k

n

]
, 1 ≤ k ≤ n. (17.22)

Corollary 17.6. S(n) converges in distribution to Brownian motion with drift
parameter μ as n →∞
Proof. Consider the centered and rescaled random walk Sk,n = (1− μ2

n )
− 1

2 {(Z1,n−
μ√
n
) + · · · + (Zk,n − μ√

n
)} = ∑k

j=1 Z j,n, k ≥ 1, S0,n = 0, where the i.i.d.

displacements Z j,n = (1 − μ2

n )
− 1

2 (Z j,n − μ√
n
), j = 1, . . . , n have mean zero and
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variance one. Next define define the centered and scaled polygonal random walk

S
(n)

on [0, 1] by

S
(n)
t := Sk−1,n√

n
+ n

(

t − k − 1

n

)
Sk,n − Sk−1,n√

n

for t ∈
[

k−1
n , k

n

]
, 1 ≤ k ≤ n. (17.23)

Then from Skorokhod embedding one has S
(n) ⇒ B as n → ∞. The assertion

follows since Sk,n =
√

1− μ2

n Sk,n + μ√
n

k, k = 1, . . . n, and therefore

S(n)t =
√

1− μ2

n
S
(n)
t + μt + μ

n
⇒ Bt + μt, 0 ≤ t ≤ 1.

�
As an application announced in the preceding chapter, we now have

Proof of Proposition 7.21. Consider for each large n, the Bernoulli sequence
{Zm,n : m = 1, 2, . . .} defined above. Write Sm,n = Z1,n + · · · + Zm,n for

m ≥ 1, S0,n = 0. Then, with X (n)
t = S[nt],n√

n
, t ≥ 0,

EX (n)
t = ES[nt],n√

n
=
[nt] μ

σ
√

n√
n

→ tμ

σ
,

Var X (n)
t = [nt]Var Z1,n

n
= [nt]

n

(

1−
(

μ

σ
√

n

)2
)

→ t,

the associated polygonal process {X̃ (n)
t : t ≥ 0} converges in distribution to a

Brownian motion with drift μ/σ and diffusion coefficient 1 that starts at the origin
(Exercise 17). Let {X x

t : t ≥ 0} be a Brownian motion with drift μ and diffusion
coefficient σ 2 starting at x . Then {Wt = (X x

t − x)/σ : t ≥ 0} is a Brownian motion
with drift μ/σ and diffusion coefficient 1 that starts at the origin. Hence, by using
the second relation of Proposition 2.1 of Chapter 2, one may calculate

P(τ x
c < τ x

d ) = P({X x
t : t ≥ 0} reaches c before d)

= P

(

{Wt }t≥0 reaches
c − x

σ
before

d − x

σ

)

= lim
n→∞({Sm,n : m = 0, 1, 2, . . .} reaches cn before dn)

= lim
n→∞

1− (pn/qn)
d−x
σ

√
n

1− (pn/qn)
d−x
σ

√
n− c−x

σ

√
n
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= lim
n→∞

⎧
⎪⎨

⎪⎩
1−

⎛

⎝
1+ μ

σ
√

n

1− μ

σ
√

n

⎞

⎠

d−x
σ

√
n
⎫
⎪⎬

⎪⎭

/
⎧
⎪⎨

⎪⎩
1−

⎛

⎝
1+ μ

σ
√

n

1− μ

σ
√

n

⎞

⎠

d−c
σ

√
n
⎫
⎪⎬

⎪⎭

=
⎧
⎨

⎩
1−

exp
{

d−x
σ 2 μ

}

exp
{
− d−x

σ 2 μ
}

⎫
⎬

⎭

/
⎧
⎨

⎩
1−

exp
{

d−c
σ 2 μ

}

exp
{
− d−c

σ 2 μ
}

⎫
⎬

⎭
.

The first asserted probability now follows again providing that one also checks
that P(∂[τ x

c < τ x
d ]) = 0. This case is made simpler by the presence of a drift

(Exercise 2). If the first relation of Proposition 2.1 Chapter 2 is used instead of the
second, then the second probability is calculated similarly. Next, letting d ↑ ∞ in
the first relation of the proposition, one obtains the first result and letting c ↓ −∞
in the second relation one obtains the second assertion. �

For another application of Skorokhod embedding let us see how to obtain a law
of the iterated logarithm (LIL) for sums of i.i.d. random variables using the LIL for
Brownian motion (Theorem 7.23).

Theorem 17.7 (Law of the Iterated Logarithm). Let X1, X2, . . . be an i.i.d.
sequence of random variables with EX1 = 0, 0 < σ 2 := EX2

1 < ∞, and let
Sn = X1 + · · · + Xn , n ≥ 1. Then with probability one,

lim sup
n→∞

Sn
√

2σ 2n log log n
= 1.

Proof. By rescaling if necessary, one may take σ 2 = 1 without loss of generality.
In view of Skorokhod embedding one may replace the sequence {Sn : n ≥ 0} by the
embedded random walk {S̃n = BTn : n ≥ 0}. By the SLLN one also has Tn

n → 1
a.s. as n → ∞. In view of the law of the iterated logarithm for Brownian motion,

it is then sufficient to check that S̃[t]−Bt√
t log log t

→ 0 a.s. as t →∞. From Tn
n → 1 a.s.,

it follows for given ε > 0 that with probability one, 1
1+ε <

T[t]
t < 1 + ε for all t

sufficiently large. Let tn = (1+ ε)n , n = 1, 2, . . . . Then for tn ≤ t ≤ tn+1, for some
n ≥ 1, one has

Mt := max

{

|Bs − Bt | : t

1+ ε
≤ s ≤ t (1+ ε)

}

≤ max

{

|Bs − Bt | : t

1+ ε
≤ s ≤ t

}

+max {|Bs − Bt | : t ≤ s ≤ t (1+ ε)}

≤ max

{

|Bs − Btn | :
tn

1+ ε
≤ s ≤ tn+1

}

+max
{|Bs − Btn | : tn ≤ s ≤ tn+1

}

≤ 2Mtn + 2Mtn+1 .
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Since tn+2 − tn−1 = γ tn−1 = γ
1+ε tn , where γ = (1 + ε)3 − 1, it follows from

the scaling property of Brownian motion, using Lévy’s Inequality and Feller’s tail
probability estimate, that

P

(

Mtn >

√

3
γ

1+ ε
tn log log tn

)

= P

(

max
0≤u≤1

|Bu | >
√

3 log log tn

)

≤ 4P
(

B1 ≥
√

3 log log(tn)
)

≤ 4√
3 log log tn

exp

(

−3

2
log log tn

)

≤ cn−
3
2

for a constant c > 0. Summing over n, it follows from the Borel–Cantelli lemma

I that with probability one, Mtn ≤
√

3 γ
1+ε tn log log tn for all but finitely many n.

Since a.s. 1
1+ε <

T[t]
t < 1+ ε for all t sufficiently large, one has that

lim sup
t→∞

|S̃[t] − Bt |√
t log log t

≤
√

3
γ

1+ ε
.

Letting ε ↓ 0 one has γ
1+ε → 0, establishing the desired result. �

Remark 17.1. The LIL was first derived5 for Bernoulli random variables. This was
subsequently generalized6 to bounded, independent (but not i.i.d ) random variables.
The final formulation7 was eventually obtained for i.i.d. random variables with finite
second moment.

Remark 17.2. The FCLT (Theorem 17.2) is stated for convergence in S =
C[0,∞), when S has the topology of uniform convergence on compacts. One may
take the metric to be ρ(ω, ω′) =∑∞

k=1 2−kdk/(1+ dk), where dk = max{|(ω(t)−
ω′(t)| : 0 ≤ t ≤ k}. Hence if X (n) converges to X on [0, k] for every k > 0 (in the
metric of dk), then X (n) converges to X on [0,∞) (in the metric ρ). The following
result simply restates this.

Proposition 17.8. Suppose that X, X (n), n ≥ 1, are stochastic processes with
values in C[0,∞) for which one has that {X (n)

t : 0 ≤ t ≤ k} converges in
distribution to {Xt : 0 ≤ t ≤ k} for each k = 1, 2, . . . . Then X (n) converges in
distribution to X as processes in C[0,∞).

5Khinchine (1924).
6Kolmogoroff (1929).
7Hartman and Wintner (1941).



Exercises 211

Exercises

1. Fix t0 > 0, a, b ∈ R, a < b, and let G denote the finite-dimensional event
G := {x ∈ C[0,∞) : a ≤ x(t0) ≤ b}. Identify ∂G and show W (∂G) = 0,
where W is Wiener measure.

2. (i) Show that the boundary of the set F = {ω ∈ C[0,∞) : τc(ω) < τd(ω)|
has probability zero under Wiener measure W on Ω = C[0,∞), i.e.,
the probability that the standard Brownian motion belongs to ∂F is zero.
[Hint: Let G be the set of paths that pass below c before reaching d. Then
G ⊂ F . Show that G is open under the topology of uniform convergence on
compacts. On the other hand, by Blumenthal’s zero-one law, W (F\G) = 0.
If ω /∈ F belongs to the closure of F , then ω ∈ C , where C comprises all
paths ω which neither reach c nor d. But W (C) = 0.]

(ii) Prove (i) for Brownian motion with a nonzero drift. [Hint: All one needs to
prove in this case, in addition to (i), is that the probability of F\G is zero
(for BM under drift). Let {Bt : t ≥ 0} be a standard BM (with zero drift).
Then B̃t =dist t B 1

t
, t > 0, B̃0 = 0, is also a standard BM. Applying the

Law of Iterated Logarithm to B̃t , as t ↑ ∞, shows that the set {0 < t < ε :
Bt + μt < 0} is non-empty, with probability one, for every ε > 0, whatever
be μ.]

3. Show that the functions f : C[0,∞)→ R defined by

f (ω) = max
a≤t≤b

ω(t), g(ω) = min
a≤t≤b

ω(t)

are continuous for the topology of uniform convergence on bounded intervals.
4. Suppose that for each n = 1, 2, . . . , {xn(t), 0 ≤ t ≤ 1}, is the deterministic

process whose sample path is the continuous function

xn(t) =

⎧
⎪⎪⎨

⎪⎪⎩

nt, 0 ≤ t < 1
n

2− nt, 1
n ≤ t < 2

n

0, 2
n ≤ t ≤ 1.

(i) Show that the finite-dimensional distributions converge to those of the a.s.
identically zero process {z(t) : 0 ≤ t ≤ 1}, i.e., z(t) ≡ 0, 0 ≤ t ≤ 1.

(ii) Check that max0≤t≤1 xn(t) does not converge to max0≤t≤1 z(t) in distribu-
tion.

5. Give an example to demonstrate that it is not the case that the FCLT gives
convergence of probabilities of all infinite-dimensional events in C[0,∞).
[Hint: The polygonal process has finite total variation over 0 ≤ t ≤ 1 with
probability 1.]

6. Let X1, X2, . . . be i.i.d. random variables with EXn = 0, Var Xn = σ 2 > 0. Let
Sn = X1+· · ·+Xn , n ≥ 1, S0 = 0. Express each of the random variables defined
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below in terms of the rescaled random walk process {X (n)
t := n− 1

2 S[nt] : t ≥ 0}
and compute their limit distributions in terms of the appropriate random variable
associated with Brownian motion having drift 0 and diffusion coefficient σ 2 > 0.

(i) Fix θ > 0, Yn = n−θ/2 max{|Sk |θ : 1 ≤ k ≤ n}. [Hint: Apply
Corollary 7.17 to obtain the limit distribution in terms of a series of normal
distributions.]

(ii) Let M (0)
n = n−1/2 maxk≤n(Sk − k

n Sn). Compute the distribution of the
running maximum of the Brownian bridge (or tied-down Brownian motion)
B∗t = Bt − t B1, 0 ≤ t ≤ 1, and apply this to the limit distribution of M (0)

n
above. [Hint: Show that P(max0≤t≤1 B∗t ≤ x) = limε↓0 P(max0≤t≤1 Bt ≤
x ||B1| ≤ ε) and compute the limit directly from the ratio of probabilities.
According to Alexandrov’s theorem (see BCPT p. 137) it suffices to check
lim supε→0 P(B ∈ F | − ε < B1 < ε) ≤ P(B∗ ∈ F) for closed
subsets F of C[0, 1]. Let ρ denote the uniform metric on C[0, 1]. Then,
sup0≤t≤1 |B∗t − Bt | = |B1|, so [|B1| ≤ δ, B ∈ F] ⊂ [B∗ ⊂ Fδ] where
Fδ = {ω ∈ C[0, 1] : ρ(ω, F) ≤ δ} for ρ(ω, F) = inf{ρ(ω, η) : η ∈ F}. So
for ε < δ, P(B ∈ F | − ε < B1 < ε) ≤ P(B∗ ∈ Fδ| − ε < B1 < ε) =
P(B∗ ∈ Fδ).]

(iii) Yn = n−3/2 ∑n
k=1 Sk . Show that the distribution of

∫ 1
0 Bt dt is Gaussian

with mean zero and variance 1/3, and apply to the limit distribution of Yn

above. [Hint: Express as limit of Riemann sum.]

7. Let {Sn : n = 0, 1, . . . } denote the simple symmetric random walk starting at 0,
and let

mn = min
0≤k≤n

Sk, Mn = max
0≤k≤n

Sk, n = 1, 2 · · · .

Let {Bt : t ≥ 0} denote a standard Brownian motion starting at zero
and let m = min0≤t≤1 Bt , M = max0≤t≤1 Bt . Then, by the FCLT,
n−1/2(mn, Mn, Sn) converges in distribution to (m, M, B1) since the functional
ω → (min0≤t≤1 ωt ,max0≤t≤1 ωt , ω1) is a continuous map of the metric space
C[0, 1] into R

3. For notational convenience, let

pn( j) = P(Sn = j), pn(u, v, y) = P(u < mn ≤ Mn < v, Sn = y),

for integers u, v, y such that n − 1 ≤ u < 0 < v ≤ n + 1, u < y < v. Also
let Φ(a, b) = P(a < Z ≤ b), where Z has the standard normal distribution.
Related results for Brownian motion are also obtained by other methods (e.g.,
strong Markov property) in later chapters. Show



Exercises 213

(i) pn(u, v, y) =
∞∑

k=−∞
pn(y + 2k(v − u))−

∞∑

k=−∞
pn(2v − y + 2k(v − u)).

[Hint: Since the random walk is bounded by n in n steps, these are finite
sums for u < v. To verify this identity first check it for n = 0. The only
allowable u, v, y are u = −1, v = 1, y = 0. For this case the left side
equals one, the first sum on the right has only one nonzero term (for k =
0) which equals one, while the second sum has no nonzero term. Then
use induction on n together with the identities pn( j) = 1

2 pn−1( j − 1) +
1
2 pn−1( j +1) and pn(u, v, y) = 1

2 pn−1(u−1, v−1, y−1)+ 1
2 pn−1(u+

1, v + 1, y + 1).]
(ii) For integers, u < 0 < v, u ≤ y1 < y2 ≤ v,

P(u < mn < Mn < v, y1 < Sn < y2)

=
∞∑

k=−∞
P(y1 + 2k(v − u) < Sn < y2 + 2k(v − u)))

−
∞∑

k=−∞
P(2v − y2 + 2k(v − u) < Sn < 2v − y1 + 2k(v − u)).

[Hint: Sum over y in (i).]
(iii) For real numbers u < 0 < v, u ≤ y1 < y2 ≤ v,

P(u < m ≤ M < v, y1 < B1 < y2)

=
∞∑

k=−∞
Φ(y1 + 2k(v − u), y2 + 2k(v − u))

−
∞∑

k=−∞
Φ(2v − y2 + 2k(v − u), 2v − y1 + 2k(v − u)).

[Hint: Respectively substitute the integers [v√n], −[−u
√

n], [y1
√

n],
−[−y2

√
n] into (ii) ([ ] denoting the integer part function). Use Scheffé’s

theorem8 to justify the interchange of limit with summation over k.]
(iv) P(M < v, y1 < B1 < y2) = Φ(y1, y2)−Φ(2v − y2, 2v − y1).

[Hint: Take u = −n − 1 in (iv) and then pass to the limit.]

(v) P(u < m ≤ M < v) =
∞∑

k=−∞
(−1)kΦ(u + 2k(v − u), v + 2k(v − u)).

[Hint: Take y1 = u, y2 = v in (v).]

8See BCPT p.14.
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(vi) P( max
0≤t≤1

|Bt | < v) =
∞∑

k=−∞
(−1)kΦ((2k − 1)v, (2k + 1)v). [Hint: Take

u = −v in (vii).]
(vii) Explain how the above extends to mt := min{Bs : s ≤ t} and Mt :=

max{Bs : s ≤ t}.[Hint: Rescale {But : 0 ≤ u ≤ 1}.]



Chapter 18
ArcSine Law Asymptotics

Suppose two players A and B are engaged in independent repeated plays of
a fair game in which each player wins or loses one unit with equal proba-
bility. The implicit symmetry of this scenario results in the counterintuitive
phenomena that in a long series of plays it is not unlikely that one of the
players will remain on the winning side while the other player loses for
more than half of the series. This chapter derives the distribution of (a) the
last time in 2m steps that a simple symmetric random walk visits zero in
a finite interval, (b) the time spent on the positive side in a finite interval,
and (c) the time of the last zero in a finite interval and the arcsine limit
distribution for corresponding functionals of Brownian motion. The reference
to first, second, and third arcsine laws largely follows nomenclature of Feller
(1968/1971) commonly cited in the probability literature, although they are
not derived in that order here, the first being due to Lévy. Apart from its
aid in illustrating an important nuance for decision makers when dealing
with random phenomena, the arcsine law involves a rather non-intuitive
distribution of natural functionals of the random walk and Brownian motion.
The asymptotic results for random walk are obtained by an application of the
local limit theorem from Chapter 16. Although the functional central limit
theorem of the previous Chapter 17 can also be applied, it is not required
beyond identifying the random walk limits with corresponding functionals of
Brownian motion.
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Consider a simple symmetric random walk {Sm}∞m=0 starting at zero, Sm = X1 +
· · · + Xm, (m ≥ 1), S0 = 0. The first problem for this chapter is to calculate the
distribution of the last visit to zero by S0, S1, . . . , S2n . For this we consider the
probability that the number b of +1’s exceeds the number a of −1’s until time N
and with a given positive value of the excess b−a at time N . Notice that N = b+a
in this instance.

Lemma 1. Let a and b be two integers, 0 ≤ a < b. Then

P(S1 > 0, S2 > 0, . . . , Sa+b−1 > 0, Sa+b = b − a)

=
[(

a + b − 1

b − 1

)

−
(

a + b − 1

b

)](
1

2

)a+b

=
(

a + b

b

)
b − a

a + b

(
1

2

)a+b

(18.1)

Proof. Each of the
(a+b

b

)
paths from (0, 0) to (a+ b, b− a) has probability ( 1

2 )
a+b.

We seek the number M of those for which S1 = 1, S2 > 0, S3 > 0, . . . , Sa+b−1 >

0, Sa+b = b − a. Now the paths from (1, 1) to (a + b, b − a) that cross or touch
zero (the horizontal axis) are in one-to-one correspondence with the set of all paths
that go from (1,−1) to (a + b, b − a). This correspondence is set up by reflecting
each path of the last type about zero (i.e., about the horizontal time axis) up to the
first time after time zero that zero is reached and leaving the path from then on
unchanged. The reflected path leads from (1, 1) to (a + b, b − a) and crosses or
touches zero. Conversely, any path leading from (1, 1) to (a+ b, b− a) that crosses
or touches zero, when reflected in the same manner, yields a path from (1,−1) to
(a+ b, b− a). But the number of all paths from (1,−1) to (a+ b, b− a) is simply(a+b−1

b

)
, since it requires b plus 1’s and a − 1 minus 1’s. Hence

M =
(

a + b − 1

b − 1

)

−
(

a + b − 1

b

)

,

since there are altogether
(a+b−1

b−a

)
paths from (1, 1) to (a + b, b − a). Now a

straightforward simplification yields

M =
(

a + b

b

)
b − a

a + b
.

�
Lemma 2. For the simple symmetric random walk starting at zero, we have

P(S1 �= 0, S2 �= 0, . . . , S2n �= 0) = P(S2n = 0) =
(

2n

n

)(
1

2

)2n

. (18.2)
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Proof. By symmetry, the leftmost side of (18.2) equals, using Lemma 1,

2P(S1 > 0, S2 > 0, . . . , S2n > 0)

= 2
n∑

r=1

P(S1 > 0, S2 > 0, . . . , S2n−1 > 0, S2n = 2r)

= 2
n∑

r=1

[(
2n − 1

n + r − 1

)

−
(

2n − 1

n + r

)](
1

2

)2n

= 2

(
2n − 1

n

)(
1

2

)2n

=
(

2n

n

)(
1

2

)2n

= P(S2n = 0),

where we have adopted the convention that
(2n−1

2n

) = 0 in writing the middle
equality. �
Theorem 18.1. Let Γ (m) = max{ j : 0 ≤ j ≤ m, S j = 0}. Then

P(Γ (2n) = 2k)

= P(S2k = 0)P(S2n−2k = 0)

=
(

2k

k

)(
1

2

)2k (2n − 2k

n − k

)(
1

2

)2n−2k

= (2k)!(2n − 2k)!
(k!)2((n − k)!)2

(
1

2

)2n

for k = 0, 1, 2, . . . , n. (18.3)

Proof. By Lemma 2,

P(Γ (2n) = 2k) = P(S2k = 0, S2k+1 �= 0, S2k+2 �= 0, . . . , S2n �= 0)

= P(S2k = 0)P(S1 �= 0, S2 �= 0, . . . , S2n−2k �= 0)

= P(S2k = 0)P(S2n−2k = 0).

�
The following symmetry relation is a corollary of Theorem 18.1:

P(Γ (2n) = 2k) = P(Γ (2n) = 2n − 2k) for all k = 0, 1, . . . , n. (18.4)

Theorem 18.2. Let {Z1, Z2, . . .} be a sequence of i.i.d. random variables such that
EZ1 = 0, EZ2

1 = 1. Then, defining γ (n) = 1
nΓ

(n), one has

lim
n→∞ P(γ (n) ≤ x) = 2

π
sin−1√x . (18.5)
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Proof. We will use the local limit theorem from Chapter 16 for the sequence Xn :=
γ (2n) ≡ 1

2nΓ
(2n), with x (n)i = 2i

2n = i
n , 0 ≤ i ≤ n, p(n)i = P(Xn = x (n)i ) =

P(Γ (2n) = 2i) as given by (18.3), and A(n)
i = ( i

n ,
i+1

n ] (i = 1, 2, . . . , n − 1),

A(n)
0 = [0, 1

n ]. Then |A(n)
i | = 1

n . For i →∞ and n − i →∞ as n →∞, one has,
by Stirling’s approximation,

p(n)i = (2i)!(2n − 2i)!
(i !)2((n − i)!)2 2−2n

=
√

2πe−2i (2i)2i+ 1
2
√

2πe−(2n−2i)(2n − 2i)2n−2i+ 1
2

(√
2πe−i i i+ 1

2
√

2πe−(n−i)(n − i)n−i+ 1
2

)2 · 2−2n(1+ o(1))

= 1

π
√

i(n − i)
(1+ o(1)).

Fix x ∈ (0, 1). Then x ∈ A(n)
i with i = i(n, x), where nx − 1 ≤ i(n, x) < nx for

all n > 1
x . Hence, with i = i(n, x),

fn(x) := p(n)i

|A(n)
i |

= n

(
1

π
√

i(n − i)
(1+ o(1))

)

→ 1

π
√

x(1− x)
= f (x).

By the local limit theorem (Proposition 16.1), Xn ≡ γ (2n) converges in distribution
to the distribution whose density is f (x) depicted in Figure 18.1. �

Remark 18.1. Paul Lévy1 had already discovered the (first) arcsine law for Brown-
ian motion without appeal to random walk limits. Feller’s asymptotic arcsine law
for random walk could also be viewed as a consequence of Lévy’s arcsine law
and the invariance principle. On the other hand, Lévy’s arcsine law for Brownian
motion follows from Feller’s via the (same) functional central limit theorem. So this
provides a good illustration of the dual use of the functional central limit theorem
for those familiar with Chapter 17. The reference to first, second, and third arcsine
laws largely follows nomenclature of Feller occasionally cited in the probability
literature, although they are not derived in that order here.

The next lemma is a useful tool for identifying continuity sets for weak
convergence, see Exercises 1 and 2.

Lemma 3. Let Ω = C[0, 1], and let Q be a probability measure on its Borel σ -
field. If the distribution function F(x) = Q({ω ∈ Ω : X (ω) ≤ x}) of an upper
semicontinuous random variable X on Ω is continuous at x = t0, then A = {ω ∈
Ω : X (ω) ≤ t0} is a Q-continuity set.

1Lévy (1939).
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1
2

1
0

2
π

x

1
π x(1 − x)

Fig. 18.1 Arcsine Law (pdf)

Proof. From upper-semicontinuity, U = {ω ∈ Ω : X (ω) < t0} ⊂ A is open. So
∂A ⊂ A\U ⊂ {ω ∈ C[0, 1] : X (ω) = t0}. Thus, Q(∂A) ≤ P(X (ω) = t0) = 0,
making A a Q-continuity set. �
Remark 18.2. Consider a simple symmetric random walk {Sm}∞m=0 and the polyg-

onal processes {X̃ (n)
t : t ≥ 0} (n ≥ 1) associated with it (see (17.4)). Then

γ (n) := sup{t : 0 ≤ t ≤ 1, X̃ (n)
t = 0}

= 1

n
sup{m : 0 ≤ m ≤ n, Sm = 0} = 1

n
Γ (n).

The following (invariance) corollary can be obtained by an application of the FCLT
(see Exercise 6).

Corollary 18.3 (The Second ArcSine Law). Let {Bt : t ≥ 0} be a standard
Brownian motion starting at zero. Let γ = sup{t : 0 ≤ t ≤ 1, Bt = 0}. Then
γ has the probability density function

f (x) = 1

π(x(1− x))1/2 , 0 < x < 1, (18.6)
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and corresponding distribution function

P(γ ≤ x) =
∫ x

0
f (y)dy = 2

π
sin−1√x, 0 ≤ x ≤ 1. (18.7)

One may also consider the time spent above zero by the polygonal process
{X̃ (2n)

t : 0 ≤ t ≤ 1}. It is simple to see that this time equals 1
2n U2n , where for

mathematical convenience, U2n = #{k ≤ 2n : Sk−1 or Sk > 0} counts the number
of (interpolated) path segments connecting (k − 1, Sk−1) to (k, Sk) that lie on the
positive side of the horizontal, i.e., either Sk−1 = 0, Sk > 0, or Sk−1 > 0, Sk = 0,
or both are positive. By an induction argument, one can show that U2n has the same
distribution as Γ (2n) as follows.

Lemma 4. For the simple symmetric random walk, U2n and Γ (2n) have the same
distribution.

Proof. We first prove that P(U2n = 0) = P(Γ (2n) = 0). For this,

P(U2n = 0)

= P(S j ≤ 0, 1 ≤ j ≤ 2n) = P(S j ≥ 0, 1 ≤ j ≤ 2n)

= 2P(X2n+1 = 1, S j ≥ 0, 1 ≤ j ≤ 2n)

= 2P(X2n+1 = 1, S j + X2n+1 ≥ 1, 1 ≤ j ≤ 2n)

= 2P(S j ≥ 1, 1 ≤ j ≤ 2n + 1)

= 2P(S j > 0, 1 ≤ j ≤ 2n + 1),

where the second to last equality follows by relabeling i.i.d. increments as X ′1 =
X2n+1, X ′j = X j−1, 2 ≤ j ≤ 2n. Thus, P(U2n = 0) = 2

∑n+1
m=1 P(S j > 0, 1 ≤

j ≤ 2n, S2n+1 = 2m − 1) = 2
(2n

n

)
2−(2n+1) = (2n

n

)
2−2n , by the telescoping sum on

the left side of Lemma 1, with a+b = 2n+1, a−b = 2m−1, i.e., b = n+m,m =
1, . . . , n + 1. Thus, using Theorem 18.1, P(U2n = 0) = (2n

n

)
2−n = P(Γ (2n) = 0).

Also P(U2n = 2n) = P(S j ≥ 0, 1 ≤ j ≤ 2n) = P(S j ≤ 0, 1 ≤ j ≤ 2n) =
P(U2n = 0) = P(Γ (2n) = 0) = P(Γ (2n) = 2n). Indeed, by reflection symmetry,
P(U2n = 2m) = P(U2n = 2n − 2m), for 0 ≤ m ≤ n. For 1 ≤ k ≤ n − 1, consider
the paths corresponding to the event [U2n = 2k]. Either a path has positive segments
up to the time 2 j of the first return to zero and has 2k − 2 j positive excursions in
the interval [2 j, 2n], or the path is negative until the first return to zero at time 2 j
and has 2k positive excursions in the interval [2 j, 2n]. Summing the probabilities of
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these events, one has upon conditioning these events on [X1 = 1] and [X1 = −1],
respectively,

P(U2n = 2k) = 1

2

k∑

j=1

P(τ = 2 j)P(U2n−2 j = 2k − 2 j)

+ 1

2

k∑

j=1

P(τ = 2 j)P(U2n−2 j = 2k), (18.8)

where τ = min{ j ≥ 1 : S j = 0}. Make the induction hypothesis U2m =dist Γ (2m)

for m ≤ n − 1, and substitute into (18.8) to get

P(U2n = 2k)

= 1

2

k∑

j=1

P(τ = 2 j)P(Γ (2n−2 j) = 2k − 2 j)+ 1

2

k∑

j=1

P(τ = 2 j)P(Γ (2n−2 j) = 2k)

= 1

2

k∑

j=1

P(τ = 2 j)P(S2k−2 j = 0)P(S2n−2k = 0)

+ 1

2

k∑

j=1

P(τ = 2 j)P(S2k = 0)P(S2n−2 j−2k = 0)

= 1

2
P(S2n−2k = 0)

k∑

j=1

P(τ = 2 j)P(S2k−2 j = 0)

+ 1

2
P(S2k = 0)

k∑

j=1

P(τ = 2 j)P(S2n−2 j−2k = 0)

= 1

2
P(S2n−2k = 0)P(S2k = 0)+ 1

2
P(S2k = 0)P(S2n−2k = 0)

= P(S2k = 0)P(S2n−2k = 0) = P(Γ (2n) = 2k),

where the second to the last line follows from the strong Markov property. This
completes the induction. �

In view of Theorem 18.2 and Lemma 4, one obtains the following corollary.

Corollary 18.4.

lim
n→∞ P(U2n ≤ t) = 2

π
sin−1(

√
t). (18.9)

The connection to Brownian motion is made using the functional central limit
theorem to obtain the following.
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Corollary 18.5 (The First ArcSine Law ). Let U be the Lebesgue measure of the
set {t ≤ 1 : Bt ≥ 0}, where {Bt : t ≥ 0} is a standard Brownian motion starting at
0. Then,

P(U ≤ t) = 2

π
sin−1(

√
t). (18.10)

The final arcsine law concerns the time at which the random walk S0, S1, . . . , Sn

attains its maximum value, i.e., the argmax of i → Si , i ≤ n. Since the argmax for
random walk may be a set of points, consider the point Vn of the first maximum.
That is, for even k = 2m, say,

[V2n = k] = [S0 < Sk, . . . , Sk−1 < Sk] ∩ [Sk+1 ≤ Sk, . . . , S2n ≤ Sk]. (18.11)

In preparation we record some basic random identities that are obtained by
symmetries, reflections, and translations of random walk paths. First by simple
symmetry, one has the following relationships (Exercise 3):

P(S1 ≤ 0, . . . , S2n ≤ 0) = P(S1 ≥ 0, . . . , S2n ≥ 0). (18.12)

P(S1 < 0, . . . , S2n < 0) = P(S1 > 0, . . . , S2n > 0). (18.13)

P(S1 �= 0, . . . , S2n �= 0) = 2P(S1 < 0, . . . , S2n < 0). (18.14)

Moreover, since every strictly positive path emanating from (0, 0)must pass through
(1, 1),

P(S1 > 0, . . . , S2n > 0) = 1

2
P(S2 ≥ 1, . . . , S2n ≥ 1) = 1

2
P(S1 ≥ 0, . . . , S2n−1 ≥ 0),

(18.15)
where the last equality is the result of a 1–1 unit coordinate shift map on the possible
paths. But since 2n − 1 is odd, [S1 ≥ 0, . . . , S2n−1 ≥ 0] = [S1 ≥ 0, . . . , S2n−1 ≥
1] = [S1 ≥ 0, . . . , S2n−1 ≥ 0, S2n ≥ 0], so that P(S1 ≥ 0, . . . , S2n−1 ≥ 0) =
P(S1 ≥ 0, . . . , S2n−1 ≥ 1) = P(S1 ≥ 0, . . . , S2n ≥ 0). That is, using this
with (18.15),

P(S1 ≥ 0, . . . , S2n ≥ 0) = 2P(S1 > 0, . . . , S2n > 0). (18.16)

Similarly, but with a little more cleverness, one may construct a one-to-one map
between the indicated sets of paths for the following equivalence2 linking each of
the above probabilities (18.12)–(18.16) to P(S2n = 0).

2This construction is due to Edward Nelson according to Feller (1968), p. 96.
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Lemma 5.

P(S1 ≥ 0, . . . , S2n ≥ 0) = P(S2n = 0).

Proof. Consider a possible simple random walk path (k, sk), k = 0, 1, . . . , 2n from
(0, 0) (2n, 0), i.e., any path from the origin for which s2n = 0. To follow the proof,
it may be helpful to draw figures to depict the indicated transformations. Suppose
that the first (absolute) minimum point is (k′,−m′),m′ ≥ 0. Reflect the part of the
path from (0, 0) to (k′,−m′) by 180◦ along the vertical line k = k′ to a path section
from (k′,−m′) to (2k′, 0), and translate this reflected section by (2n − k′,m′) to
start at (2n, 0) and end at (2n + k′,m′). The final step is to render (k′,−m′) as the
origin of a new coordinate system by translating the entire new path by (−k′,m′).
The resulting path then extends from the origin to (2n, 2m′), and all ordinates lie
strictly above or on the horizontal axis. Note that if m′ = 0, then k′ = 0, and these
transformations leave the path fixed. Moreover, this transformation from a path for
which s0 = 0, s2n = 0 to the path with s0 = 0, s1 ≥ 0, . . . , s2n ≥ 0 is invertible,
i.e., paths s0 = 0, s1 ≥ 0, . . . , s2n ≥ 0 are mapped to paths with s2n = 0 by
reversing the transformations (Exercise 4). In particular, the proof is complete since
it is shown that the respective numbers of paths are the same, and all the paths are
equally probable. �

The proof of the next lemma is interesting in its own right, as it employs
Feller’s notion of path duality, wherein one observes that reversing the order of the
displacements of a finite path segment of length n is a one-to-one transformation
between sets of paths of length n. Equivalently, one rotates the given path through
180o about its right endpoint and translates the resulting path to make the right
endpoint the starting point (origin).

Lemma 6. Let k = 2m or k = 2m + 1 according to whether the first maximum
occurs at an even or odd time. If 0 < k < 2n,

P(V2n = k) = 1

2
P(S2m = 0)P(S2n−2m = 0),

and for m = 0, m = n, respectively, one has

P(V2n = 0) = P(S2n = 0),

P(V2n = 2n) = 1

2
P(S2n = 0).

Proof. For path length k = 2m ≥ 2, define the dual paths by S∗j = X∗1 + · + X∗j =
S2m − S j , j = 0, 1, . . . , 2m, where X∗1 = X2m, . . . , X∗2m = X1. Then the events
[S2m > S j , j = 0, . . . , 2m − 1] and [S∗j > 0, j = 1, . . . , 2m] are dual and,

therefore, have the same probability 1
2 P(S∗j ≥ 0, j = 0, . . . , 2m) = 1

2 P(S2m = 0),
by (18.16) and Proposition 5. The event [Sk+1 ≤ Sk, . . . , S2n ≤ Sk] in (18.11) is the
event that in a random walk path of length 2n − k, the walk remains non-negative



224 18 ArcSine Law Asymptotics

at each step, independently of the event [S2m > S j , j = 0, . . . , 2m − 1], and is
an event with probability P(S2n−2m = 0). The case of odd k = 2m + 1 is left to
the reader. In the case k = 0, the path remains negative for the duration 2n, and for
k = 2n, the dual path must remain strictly positive. �

The proof of the following now follows the same lines as that for Theorem 18.2
and is left as Exercise 5

Theorem 18.6.

lim
n→∞ P(V2n ≤ t) = 2

π
sin−1(

√
t).

Corollary 18.7 (The Third ArcSine Law). Let Mt = max{Bs : 0 ≤ s ≤ t}, t ≥ 0,
be the running maximum of standard Brownian motion starting at 0, and let V =
inf{t ∈ [0, 1] : Bt = M1} be the argmax on [0, 1]. Then,

P(V ≤ t) = 2

π
sin−1(

√
t). (18.17)

Exercises

Throughout the exercises below, {Sn}∞n=0 denotes the simple symmetric random
walk starting at 0.

1. Let C[0,∞) be given the topology of uniform convergence on compacts. Show
that

(i) τ a( f ) defined by (7.21) is lower semicontinuous on C[0,∞) into [0,∞],
and

(ii) τa := τ a(B) is a {Gt }-stopping time, where {Gt : t ≥ 0} is the Brownian
filtration, i.e., Gt := σ {Bs : 0 ≤ s ≤ t}.

2. Show how (18.7) follows by combining the convergence in distribution of Xn =
γ (2n) to the distribution with density f (x) = 1

π
√

x(1−x)
, 0 < x < 1, i.e., local

limit theorem, with the FCLT. [Hint: Use Exercise 1 and Lemma 3.]
3. Establish the equivalent probabilities in (18.12)–(18.14). [Hint: Construct the

appropriate bijections between the indicated sets of random walk paths.]
4. Give an algorithm for inverting Nelson’s construction described in the proof

of Lemma 5. [Hint: If s0 = 0, s1 ≥ 0, . . . , s2n = 0, then the path is fixed.
Consider the case s2n = 2m′ ≥ 2. Reflect the part of the path from (k′,m′) to
(2n, 2k′) on the vertical line k = k′ corresponding to the last time sk′ = m′, and
translate this reflected part by (−k′,−m′). Translate this entire concatenated
path by (2n − k′,−m′) to complete the inversion.]

5. Give the proof of Theorem 18.6. [Hint: The proof follows that of Theo-
rem 18.2.]
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6. Prove Corollary 18.3.
7. Prove Corollary 18.5.
8. Prove a version of Lemma 6 when Vn is defined to be the time of the last

maximum, rather than the first. [Hint: For k = 0 and k = 2n, the probabilities
are interchanged; otherwise, write k = 2m and k = 2m − 1 for the even and
odd cases.]

9. Show the following for r �= 0:

(i) P(S1 �= 0, S2 �= 0, · · · , S2n−1 �= 0, S2n = 2r) = ( 2n
n+r

) |r |
n 2−2n .

(ii) P(Γ (2n) = 2k, S2n = 2r) = (2k
k

)(2n−2k
n−k+r

) |r |
n−k 2−2n

= P(S2k = 0) |r |n−k P(S2n−2k = 2r).

(iii) Show that the joint distribution of (γ, B1) has pdf 1
2π

|x |
t

1
2 (1−t)

3
2

e−
x2

2(1−t) ,

0 < t < 1, x ∈ R. [Hint: Use the multidimensional version of the
local limit theorem; see Remark 16.3 and the local (central) limit theorem
(Proposition 16.7) for simple symmetric random walk.]

10. Prove Corollary 18.7. [Hint: Let U ′
n = #{ j ≤ n : S j > 0}, and check that

P(τ (2n) = 2k) = P(U ′
2n = 2k) for k = 0, 1, . . . , n by expressing the

respective events in terms of the random walk sums, noting independence of
the segments of the walk (possibly viewed as a reverse path) before and after
2k. In the first case, it will readily follow from this that for 1 ≤ k ≤ n
P(τ (2n) = 2k) = 1

2 P(S2k = 0)P(τ (2n−2k) = 0), 1 ≤ k ≤ n, while in the
second, one also sees that P(U ′

2n = 2k) = 1
2 P(S2k = 0)P(τ (2n−2k) = 0). The

case k = 0 is immediate. Note that the difference between the functionals Un

and U ′
n of the polygonal walk X̃ (n) vanishes in the limit.]

11. Let {Bt : t ≥ 0} be standard Brownian motion starting at 0. Let s <

t . Show that the probability that {Bt : t ≥ 0} has at least one zero in
(s, t) is given by (2/π) cos−1(s/t)1/2. [Hint: Let ρ(x) = P({Bt : t ≥
0} has at least one zero in (s, t)|Bs = x). Then for x > 0,

ρ(x) = P

(

min
s≤r≤t

Br ≤ 0|Bs = x

)

= P

(

max
s≤r≤t

Br ≥ 0|Bs = −x

)

= P

(

max
s≤r≤t

Br ≥ x |Bs = 0

)

= P(τx ≤ t − s).

Likewise for x < 0, ρ(x) = P(τ−x ≤ t − s). Thus P({Bt : t ≥
0} has at least one zero in (s, t)) = Eρ(Bs) =

∫∞
0 ρ(x)( 2

πs )
1/2e− 1

2s x2
dx .]



Chapter 19
Brownian Motion on the Half-Line:
Absorption and Reflection

Two important Markov processes derived from Brownian motion starting
from a point x ≥ 0 are (i) Brownian motion absorbed at zero and (ii) Brownian
motion reflected at zero. The precise definitions of these two processes are
given and their structure delineated, including the Markov property and the
computation of the transition probabilities.

Let B = {Bt : t ≥ 0} denote a one-dimensional standard Brownian motion on
(−∞,∞), defined on a probability space (Ω,F , P). We will write B(x) = {B(x)

t :
t ≥ 0} for the standard Brownian motion starting at x and sometimes use Px and Ex

for probabilities and expected values associated with B(x).
There are two special Markov processes derived from B(x), x ≥ 0, which we

wish to single out in this chapter. Specifically these processes arise by imposing
either an absorbing or a reflecting boundary, respectively, at x = 0.

Definition 19.1. Let τ0 = inf{t > 0 : B(x)
t = 0}, where B(x) is Brownian motion

starting at x ≥ 0. The stochastic process B
(x) = {B(x)

t : t ≥ 0} with state space
[0,∞) given by

B
(x)
t :=

{
B(x)

t if t ≤ τ0

0 if t ≥ τ0
≡ B(x)

t∧τ0
, t ≥ 0,

is referred to as (standard) Brownian motion on [0,∞) starting from x ≥ 0 with
absorbing boundary at 0.
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Remark 19.1. Let τ0 : C[0,∞) → [0,∞] be defined by τ0(ω) = inf{t ≥ 0 :
ω(t) = 0}. Then τ0 = τ0(B(x)) above depends on the initial point x ≥ 0.

It is easy to check that in the case x = 0, one has τ0 = 0 with probability

one and therefore B
(0)
t = 0, t ≥ 0, almost surely (Exercise 2). Notice that since

P(B
(x)
t = 0) = P(τ0 ≤ t) > 0, the transition probabilities will not be absolutely

continuous at the boundary 0. On the other hand, for a Borel set A ⊂ (0,∞), one

has P(B
(x)
t ∈ A) = P(B(x)

t ∈ A, τ0 > t) ≤ P(B(x)
t ∈ A) and, therefore, for t > 0,

the distribution of B
(x)
t restricted to the positive half-line (0,∞) inherits absolute

continuity from the distribution of B(x)
t . The density is computed in the proof of the

following result.

Proposition 19.1. The (standard) Brownian motion absorbed at 0 starting from x ≥
0, B

(x)
, is a Markov process with continuous sample paths on the state space [0,∞)

having homogeneous transition probabilities given by

p(t; x, dy) = 1√
2π t

(e−
(x−y)2

2t − e−
(x+y)2

2t )dy, x, y > 0, t > 0,

p(t; x, {0}) = P(τ0 ≤ t), x ≥ 0, t > 0. (19.1)

Moreover,

EB
(x)
t = x, t ≥ 0.

Proof. Continuity of the sample paths follows immediately from that of the
Brownian motion. Let A be a Borel subset of (0,∞). Then for all x > 0, introducing
the shifted process {(B(x)+

s )t ≡ B(x)
s+t t ≥ 0} and using the Markov property of B(x),

one gets on the event [τ0 > s]

P(B
(x)
s+t ∈ A, τ0 > s | σ {B(x)

u 0 ≤ u ≤ s})
= P(B(x)

s+t ∈ A, τ0(B
(x)) > s + t | σ {B(x)

u 0 ≤ u ≤ s})
= 1[τ0(B(x))>s]P(B

(y)
t ∈ A, τ0(B

(y)) > t)
∣
∣
y=B(x)

s

= 1[τ0(B(x))>s]P(B
(y)
t ∈ A)

∣
∣
y=B

(x)
s

= P(B
(y)
t ∈ A)

∣
∣
y=B(x)

s
. (19.2)

The second to third lines in (19.2) use the Markov property of B(x). Note that we
have proved the Markov property with respect to the larger filtration {σ(B(x)

u ) : 0 ≤
u ≤ s}, s ≥ 0 (Exercise 7).
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For A = {0}, the Markov property may be checked by taking A = (0,∞) and

by complementation. This establishes the Markov property of B
(x)

. To compute the
transition probabilities, let s, t ≥ 0, and x > 0, and apply the reflection principle
for Brownian motion as follows for Borel A ⊂ (0,∞):

p(t; x, A) = P(B
(x)
t ∈ A)

= P(B(x)
t ∈ A, τ0 > t |B0 = x)

= P(B(x)
t ∈ A)− P(B(x)

t ∈ A, τ0 ≤ t)

= P(B(x)
t ∈ A)− P(B(x)

t ∈ −A), (19.3)

where −A := {−y : y ∈ A}. The asserted formula for the density on the
positive half-line now follows by a change of variable in P(B(x)

t ∈ −A) =
∫
−A p(t; x, y)dy = ∫

A p(t; x,−y)dy. Finally, EB
(x)
t = x follows by the indicated

integration
∫
(0,∞)

y p(t; x, y)dy and is left as an exercise. �
Remark 19.2. The same proof as above can be applied to the absorption of any
one-dimensional Markov process having continuous sample paths.

One may note from the above proof that the absolutely continuous part of the
transition probability p(t; x, dy), i.e.,

p(0)(t; x, y) := 1√
2π t

(e−
(x−y)2

2t − e−
(x+y)2

2t )dy, x, y ≥ 0, t > 0, (19.4)

is the (defective) density of “the process viewed prior to the time τ0 it reaches 0.”
For the case of reflection at x = 0, we will exploit the symmetries of the

Brownian motion transition probability density p(t; x, y); namely,

p(t; x, y) = p(t;−x,−y). (19.5)

To simplify notation, we will now write Px and Ex to indicate probabilities and
expected values associated with the process starting at x .

Definition 19.2. For x ≥ 0, the stochastic process B̃ = {B̃t : t ≥ 0} started at x
with state space [0,∞) defined by

B̃t := |Bt |, t ≥ 0,

is referred to as (standard) Brownian motion on [0,∞) starting from x ≥ 0 with
reflecting boundary at 0.

Proposition 19.2. The (standard) Brownian motion reflected at 0 starting from
x ≥ 0, B̃, is a Markov process with continuous sample paths on the state space
[0,∞) having absolutely continuous homogeneous transition probabilities with
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density given by

p̃(t; x, y) = 1√
2π t

(e−
(x−y)2

2t + e−
(x+y)2

2t ), x, y ≥ 0, t > 0.

Proof. Continuity of the sample paths follows from those of Brownian motion. In
order to show that the process {Yt := |Bt | : t ≥ 0} is a Markov process on S =
[0,∞), consider an arbitrary real-valued bounded (Borel measurable or continuous)
function g on [0,∞), and write h(x) = g(|x |), x ∈ R. One has

Ex (g(|Bs+t |) | σ {Bu 0 ≤ u ≤ s})
= Ex

[
E (g(|Bs+t |) | σ {Bu 0 ≤ u ≤ s})]

= Ex
[
EBs (h(Bs+t ) | σ {Bu 0 ≤ u ≤ s})]

= Ex

[(∫ ∞
−∞

h(y)p(t; x ′, y)dy

)

x ′=Bs

]

= Ex

[(∫ ∞
0

g(z)
(

p(t; x ′, z)+ p(t; x ′,−z)
)

dz

)

x ′=Bs

]

= Ex

[(∫ ∞
0

g(z)
(

p(t; x ′, z)+ p(t;−x ′, z)
)

dz

)

x ′=Bs

]

=
∫ ∞

0
g(z) p̃(t; |Bs |, z)dz, (19.6)

where

p̃(t; x, y) = p(t; x, y)+ p(t;−x, y). (19.7)

This proves that {|Bt | : t ≥ 0} is a time-homogeneous Markov process with the
transition probability density p̃, with respect to the filtration σ(Bu : 0 ≤ u ≤ s), s ≥
0, larger than the standard filtration σ(|Bu | : 0 ≤ u ≤ s), s ≥ 0 (Exercise 1). �

Recalling Corollary 7.11, it is possible to obtain a remarkable alternative
representation of reflecting Brownian motion due to Paul Lévy as follows.

Theorem 19.3 (Lévy’s Representation of Reflecting Brownian Motion). Let B(x)

denote a standard Brownian motion starting at x ≥ 0, and let τ0 := inf{t : B(x)
t =

0}. Define Rt = B(x)
t , 0 ≤ t < τ0, and Rt = M (0)

t − B(x)
t , t ≥ τ0, where

M (0)
t = max{B(x)

s : τ0 ≤ s ≤ t}. Then the two stochastic processes R and |B(x)|
have the same distribution.

Proof. Note that regardless of the starting point x ≥ 0, Rt = |Bt | for t ≤ τ0, B =
B(0). In particular, by the strong Markov property for Brownian motion, it suffices
to prove the theorem for the case x = 0. To show that R and |B| have the same
distribution, we will show that R is a Markov process with the same transition
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probabilities as |B| computed above. Since σ {Rs : s ≤ t} ⊂ Ft = σ {Bs : s ≤ t}, it
suffices to establish the Markov property relative to the past σ -fields Ft , t ≥ 0. For
this, one has, for r ≥ 0, s ≤ t ,

P0(Rt ≤ r |Fs)

= P0(M
(0)
s − Bt ≤ r, max

u≤t−s
(B+s )u − Bt ≤ r |Fs)

= P0(Rs − (Bt − Bs) ≤ r, max
u≤t−s

{(B+s )u − Bs} − (Bt − Bs) ≤ r |Fs).

= P0(z − Bt−s ≤ r, Mt−s ≤ Bt−s + r)
∣
∣
z=Rs

, (19.8)

since M (0) = M is the running max for B when x = 0, Rs is Fs-measurable and is
independent of Bt − Bs and B+s − Bs and, jointly, the latter two are distributed as
(Bt−s, Mt−s). Therefore,

P0(Rs ≤ r |Fs) = P0(Bt−s ≥ z − r, Mt−s ≤ Bt−s + r)|z=Rs . (19.9)

Now the joint density of Mt−s and Bt−s is given at Mt−s = a, Bt−s = b by (see
Corollary 7.12)

f (t − s; a, b) = − ∂

∂a

∂

∂b
(1−Φt−s(2a − b)) = − ∂

∂a
ϕt−s(2a − b), (19.10)

where Φt−s is the distribution function of Bt−s , i.e., normal with mean zero and
variance t − s, and ϕt−s is its density. Hence

P0(Bt−s ≥ z−r, Mt−s ≤ Bt−s+r)|z=Rs

=
∫ ∞

z−r
{
∫ b+r

b
− ∂

∂a
ϕt−s(2a−b)da}db|z=Rs

=
∫ ∞

z−r
{ϕt−s(b)−ϕt−s(b+2r)}db|z=Rs

={P0(Bt−s > z−r)−P0(Bt−s ≥ z+r)}|z=Rs

=P0(z−r ≤ Bt−s ≤ z+r)|z=Rs=P0(|Bt−s−z| ≤ r)|z=Rs . (19.11)

Thus the reflecting Brownian motion and Mt − Bt , t ≥ 0, have the same transition
probability. �
Remark 19.3. Another way to view Lévy’s representation for the process starting
from zero is Rt = B̃t + M (0)

t , where B̃ = −B is a Brownian motion and M (0)
t

is thought of as a “reflective forcing” that steers it away from the origin. This
perspective was successfully developed into a dynamic representation by Skorokhod
via stochastic differential equations.
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A more comprehensive theory of Markov processes on domains with boundaries
can be developed in a theory for diffusions.

Exercises

1. Let {Xt : t ≥ 0} be a Brownian motion starting at 0 with zero drift and diffusion
coefficient σ 2 > 0. Define Yt = |Xt |, t ≥ 0.

(i) Calculate EYt , Var Yt .
(ii) Does {Yt : t ≥ 0} have stationary increments?

(iii) Does {Yt : t ≥ 0} have uncorrelated increments? [Hint: Use the Markov
property to calculate E|YsYt | for s < t . Assume EYs(Yt−Ys) = EYsE(Yt−
Ys) and obtain contradiction.]

(iv) Is {Yt : t ≥ 0} a process with independent increments?

2. (i) Show that for standard Brownian motion starting from x = 0, one has τ0 = 0

with probability one and therefore B
(x)
t = 0, t ≥ 0, almost surely. [Hint:

Note that the hitting time of 0 starting from x is the hitting time of −x
starting from 0, and use Proposition 16.3 in Chapter 16 to compute Px (τ0 >

ε) (ε > 0) in the limit as x ↓ 0 using the dominated convergence theorem.]

(ii) Use the transition probabilities to compute Ex B
(x)
t = x for Brownian motion

starting at x with absorption at zero.

3. Let m(t, x) = Ex B
(x)
t = ∫

(0,∞)
y p(t, x, y)dy, and show that ∂m

∂t = 1
2
∂2m
∂x2

together with initial condition m(0, x) = x and boundary condition m(t, 0) =
0, t ≥ 0. Use this for an alternative approach to show that m(t, x) = x .

4. Use (19.4) to obtain the distribution of the first passage time to zero starting from
x > 0 for standard Brownian motion.

5. (i) Show that the location of the maximum of Bt , 0 ≤ t ≤ 1 is a.s. unique
in (0, 1). [Hint: Let M−

s = max0≤u≤s Bu, M+
t = maxt≤u≤1 Bu, s < t .

Then argue that P(M−
s = M+

t ) = 0 since [M−
s = M+

t ] = [Bt − Bs =
(M−

s Bs)−(M+
t −Bt )], and Bt−Bs has an absolutely continuous distribution,

independent of σ(M−
s Bs, M+

t − Bt ).]
(ii) Use Theorem 19.3 to show the equivalence of the arcsine law for the argmax

of Brownian motion with that of the time of the last zero. [Hint: The zeroes
of B and |B| are the same.]

6. The goal is to give an alternative derivation of the arcsine law for the last zero
γ before t = 1 of Brownian motion given in Chapter 18, Theorem 18.3, and
hence a limit formula for the random walk via the invariance principle, using
strong Markov property methods of the type employed in Chapter 7. Complete
the following steps. Let τx = inf{t > 0 : B(x)

t = x}.

(i) Show that P(B(x)
t ∈ dy, τ0 > t) = 1√

2π t
{e−(x−y)2

2t −e
−(x+y)2

2t }dy, x, y, t >

0.
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(ii) For 0 < s < 1, x, y > 0, show P(γ ≤ s, |Bs | ∈ dx, |B1| ∈ dy)

=
√

2
πs e− x2

2s { 1√
2π(1−s)

e−
(x−y)2

2(1−s) − e−
(x+y)2

2(1−s) }dydx . [Hint: Express as

P(|Bs | ∈ dx, |Bu | �= 0, s ≤ u ≤ 1, |B1| ∈ dy) = P(|Bs | ∈ dx)Px (B1−s ∈
dy, τ0 > 1− s).]

(iii) Show that P(γ ≤ s, |B1| ∈ dy) = 2
π

e−
y2

2 {∫
√

s
(1−s) y

0 e− u2
2 du}dy. [Hint:

Integrate the difference terms of (ii) with respect to x by completing the
square and a change of variable.]

(iv) Show that P(γ ∈ ds, |B1| ∈ dy) = y

π
√

s(1−s)3
e−

y2

2(1−s) dsdy.

(v) Complete the derivation of (18.7) in Theorem 18.3 by the indicated
integrations.

7. Show the Markov property of a process Xt , t ∈ Z+, or t ∈ [0,∞), with respect
to a filtration Gt , t ≥ 0, larger than Ft = σ(Xu : 0 ≤ u ≤ t), t ≥ 0, implies the
usual Markov property with respect to Ft , t ≥ 0.



Chapter 20
The Brownian Bridge

The Brownian bridge, or tied-down Brownian motion, is derived from the
standard Brownian motion on [0, 1] started at zero by constraining it to return
to zero at time t = 1. A precise definition is provided and its (Gaussian)
distribution is computed. The Brownian bridge arises in a wide variety of
contexts. An application is given to a derivation of the Kolmogorov–Smirnov
statistic in non-parametric statistics in this chapter. An application to the Hurst
statistic in special topics Chapter 27, to mention a few.

Certain functionals of Brownian motion paths occur naturally and are of interest in
their own right.

Definition 20.1. Let {Bt : t ≥ 0} be a standard Brownian motion starting at zero.
The stochastic process {B∗t : 0 ≤ t ≤ 1} defined by

B∗t := Bt − t B1, 0 ≤ t ≤ 1, (20.1)

is called the Brownian bridge; see Figure 20.1.

Observe that B∗t = Bt − t B1 vanishes for t = 0 and t = 1. Another name for
Brownian bridge is the tied-down Brownian motion.

Proposition 20.1 (Structure of the Brownian Bridge). {B∗t : 0 ≤ t ≤ 1} is a
Gaussian process and has a.s. continuous sample paths from Brownian motion, with
EB∗t = 0, and Cov(B∗s , B∗t ) = s(1− t), 0 ≤ s ≤ t ≤ 1.

Proof. Since {Bt : t ≥ 0} is a Gaussian process with independent increments, it is
simple to check that the finite dimensional distributions of the Brownian bridge are
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Fig. 20.1 Brownian bridge

1
0

t

B∗
t

also Gaussian since (B∗t1, . . . , B∗tk ) is a linear transformation of the jointly Gaussian
vector (Bt1, . . . , Btk , B1) for arbitrary fixed 0 < t1 < · · · , tk ≤ 1, k ≥ 1. Continuity
of paths and the zero mean are directly inherited from the corresponding properties
of the Brownian motion. Similarly,

Cov(B∗s , B∗t ) = Cov(Bs, Bt )− t Cov(Bs, B1)− s Cov(Bt , B1)

+st Cov(B1, B1)

= s − ts − st + st = s(1− t), for s ≤ t.

�
From Proposition 20.1 one can also explicitly write down the joint Gaussian density
of (B∗t1 , B∗t2 , . . . , B∗tk ) for arbitrary 0 < t1 < t2 < · · · < tk < 1 (Exercise 1).

Example 1 (Application to Non-parametric Statistics). The remainder of this chap-
ter is devoted to an important application of the Brownian bridge that arises in
the asymptotic (large sample) theory of statistics. To explain this application, let
us consider a sequence of real-valued i.i.d. random variables Y1, Y2, . . . , having
a (common) distribution function F . The nth empirical distribution is the discrete
probability distribution on the line assigning a probability 1/n to each of the n
values Y1, Y2, . . . , Yn . The corresponding distribution function Fn is called the (nth)
empirical distribution function,

Fn(t) = 1

n
#{ j : 1 ≤ j ≤ n, Y j ≤ t} = 1

n

n∑

j=1

1[Y j≤t],−∞ < t <∞, (20.2)

where #A denotes the cardinality of the set A. Suppose Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)
is the ordering of the first n observations. Note that {Fn(t) : t ≥ 0} is for each n a
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stochastic process, referred to as an empirical process. Also, E1[Y j≤t] = F(t) and,
for t1 ≤ t2,

Cov
(
1[Y j≤t1], 1[Yk≤t2]

)
{

0, if j �= k

F(t1)(1− F(t2)), if j = k.
(20.3)

It follows from the central limit theorem that

n−1/2

⎛

⎝
n∑

j=1

1[Y j≤t] − nF(t)

⎞

⎠ = √n(Fn(t)− F(t))

is asymptotically (as n → ∞) Gaussian with mean zero and variance
F(t)(1− F(t)). For t1 < t2 < · · · < tk , the multidimensional central
limit theorem applied to the i.i.d. sequence of k-dimensional random vectors
(1[Y j≤t1], 1[Y j≤t2], . . . , 1[Y j≤tk ]) shows that (

√
n(Fn(t1) − F(t1)),

√
n(Fn(t2) −

F(t2)), . . . ,
√

n(Fn(tk) − F(tk))) is asymptotically (k-dimensional) Gaussian with
zero mean and dispersion matrix

∑ = ((σi j )), where

σi j = Cov(1[Y j≤ti ], 1[Y j≤t j ]) = F(ti )(1− F(t j )), for ti ≤ t j . (20.4)

In the special case of observations from the uniform distribution on [0, 1], one has

F(t) = t, 0 ≤ t ≤ 1, (20.5)

so that the finite dimensional distributions of the stochastic process {√n(Fn(t) −
t) : 0 ≤ t ≤ 1} converge to those of the Brownian bridge as n → ∞. As
in the case of the functional central limit theorem (Theorem 17.2), probabilities
of many infinite-dimensional events of interest also converge to those of the
Brownian bridge. In this example we will restrict our considerations to the particular
functional sup0≤t≤1 |

√
n(Fn(t)− t)|.

The precise result that we will prove here is as follows. The symbol
d= below

denotes equality in distribution.

Proposition 20.2. Let Y1, Y2, . . . be i.i.d. uniform on [0, 1] and let, for each n ≥ 1,
{Fn(t) : 0 ≤ t ≤ 1} be the corresponding empirical process based on Y1, . . . ,
Yn . Then the statistic Dn := √

n sup0≤t≤1 |Fn(t) − t | converges in distribution to
sup0≤t≤1 |B∗t | as n →∞.

Proof. We will make use of the fact that the distribution of the order statistic
(Y(1), . . . ,Y(n)) of n i.i.d. random variables Y1, Y2, . . . from the uniform distribution
on [0, 1] is the same as the distribution of the ratios ( S1

Sn+1
, S2

Sn+1
, . . . , Sn

Sn+1
), where

Sk = T1 + · · · + Tk , k ≥ 1, and T1, T2, . . . is an i.i.d. sequence of (mean one)
exponentially distributed random variables.
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To show this note that (i) the joint density of (T1, T2, . . . , Tn+1) is f1(t1,

t2, . . . , tn+1) = e−
∑n+1

i=1 ti 1(0,∞)n+1(t1, . . . , tn+1), (ii) by a linear transformation
of Jacobian one, the joint density of (S1, S2, . . . , Sn+1) is therefore seen to be
f2(s1, s2, . . . , sn+1) = e−sn+11Rn+1(s1, . . . , sn+1) where Rn+1 is the set Rn+1 :=
{(s1, . . . , sn+1) : 0 < s1 < s2 < · · · < sn+1 < ∞}, from which it follows that
the conditional density of (S1, . . . , Sn), given Sn+1 = s, is f3(s1, . . . , sn | s) =

1
n!sn 1Rn+1(s1, s2, . . . , sn, s), and, finally, (iii) the conditional density of ( S1

Sn+1
, S2

Sn+1
,

. . . , Sn
Sn+1

), given Sn+1 = s, is f4(u1, u2, . . . , un | s) = 1
n!1Rn+1(u1, u2, . . . , un, 1).

Since f4 is independent of s, it is also the (unconditional or marginal) density of
( S1

Sn+1
, . . . , Sn

Sn+1
). Clearly, f4 is also the joint density of (Y(1), . . . ,Y(n)).

In the notation introduced above, now consider the following trick: Since Fn(t) =
k/n for Y(k) ≤ t < Y(k+1) and Fn(Y(k+1)) = (k + 1)/n, sup{|Fn(t) − t | : Y(k) ≤
t < Y(k+1)} = max{|Y(k) − k

n |, |Y(k+1) − k
n |} (Exercise 2),

Dn := √n sup
0≤t≤1

|Fn(t)− t | = √n max
k≤n

∣
∣
∣
∣Y(k) −

k

n

∣
∣
∣
∣+ O(n−

1
2 )

d= √
n max

k≤n

∣
∣
∣
∣

Sk

Sn+1
− k

n

∣
∣
∣
∣+ O(n−

1
2 )

= n

Sn+1
max
k≤n

∣
∣
∣
∣
Sk − k√

n
− k

n

Sn+1 − n√
n

∣
∣
∣
∣+ O(n−

1
2 )

≈ n

Sn+1
sup

0≤t≤1
|X (n)

t − t X (n)
1 |, (20.6)

where X (n)
t = S[nt]/√n , and ≈ indicates that the difference between its two sides

goes to zero in probability as n → ∞. By the SLLN, n/(Sn+1) → 1 a.s. as n →
∞. The result now follows from the FCLT (Theorem 17.2), and the definition of
Brownian bridge. �

Let Y1, Y2, . . . be an i.i.d. sequence having a (common) distribution function F
that is continuous on the real number line. Note that in the case that F is strictly
increasing on an interval (a, b) with F(a) = 0, F(b) = 1, one has for 0 < t < 1,

P(F(Yk) ≤ t) = P(Yk ≤ F−1(t)) = F(F−1(t)) = t, (20.7)

so the sequence U1 = F(Y1), U2 = F(Y2), . . . is i.i.d. uniform on [0, 1]
(Exercise 3). Let Fn be the empirical distribution function of Y1, . . . , Yn , and Gn

that of U1, . . . , Un . Then, since the proportion of Yk’s, 1 ≤ k ≤ n, that do not
exceed t coincides with the proportion of Uk’s, 1 ≤ k ≤ n, that do not exceed F(t),
we have

√
n[Fn(t)− F(t)] = √n [Gn(F(t))− F(t)] , a ≤ t ≤ b. (20.8)
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If a = −∞ (b = +∞), the index set [a, b] for the process is to exclude a (b).
It now follows from (20.8) that the Kolmogorov–Smirnov statistic defined by

Dn := sup{√n|Fn(t)− F(t)| : a ≤ t ≤ b} (20.9)

satisfies

Dn := sup
a≤t≤b

√
n|Fn(t)− F(t)| = sup

a≤t≤b

√
n |Gn(F(t))− F(t)|

= sup
0≤t≤1

√
n |Gn(t)− t | . (20.10)

Thus Proposition 20.2 has the following basic consequence.

Corollary 20.3. The distribution of Dn is the same (namely that obtained under the
uniform distribution) for all continuous F . In particular, regardless of such F , Dn

converges in distribution as n →∞ to

D := sup
0≤t≤1

|B∗t |. (20.11)

Moreover,

P(D > d) = 2
∞∑

k=1

(−1)k−1e−2k2d2
, d > 0. (20.12)

Proof. The main part of the proof precedes the statement. The calculation of the
distribution of D is outlined in Exercise 6(iii). �
Remark 20.1. The common distribution of Dn may be tabulated for small and
moderately large values of n. These results are often used to test the statistical
hypothesis that observations Y1, Y2, . . . , Yn are from a specified distribution with
a continuous distribution function F . If the observed value, say d, of Dn is so large
that the probability (approximated by (20.12) for large n) is very small for a value
of Dn as large as or larger than d to occur (under the assumption that Y1, . . . , Yn do
come from F), then the hypothesis is rejected.

In closing, note that by the strong law of large numbers, Fn(t)→ F(t) as n →
∞, with probability one. From Propositions 20.2 and (20.10), it follows that

sup
−∞<t<∞

|Fn(t)− F(t)| → 0 in probability as n →∞. (20.13)

In fact, it is possible to show that the uniform convergence in (20.13) is also almost
sure (Exercise 7). This stronger result is known as the Glivenko–Cantelli lemma.



240 20 The Brownian Bridge

Exercises

1. Compute the joint density of (B∗t1, B∗t2 , . . . , B∗tk ).

2. Show that
√

n sup
0≤t≤1

|Fn(t)− t | = √n max
k≤n

∣
∣
∣
∣Y(k) −

k

n

∣
∣
∣
∣+ O(n−

1
2 ).

3. Suppose that F is an arbitrary distribution function (not necessarily continuous).
Define an inverse to F as F−1(u) = inf{x : F(x) > u}. Show that if U is
uniform on [0, 1] then X = F−1(U ) has a distribution function F .

4. Let {Bt : t ≥ 0} be standard Brownian motion starting at 0 and let B∗t = Bt −
t B1, 0 ≤ t ≤ 1.

(i) Show that {B∗t : 0 ≤ t ≤ 1} is independent of B1.
(ii) Give a construction of the standard Brownian motion on [0, 1] from the

Brownian bridge and an independent Gaussian random variable. [Hint: Use
(i).]

5. Show that (i) Bt = (1 + t)B∗t
1+t
, t ≥ 0 is distributed as the standard Brownian

motion starting at zero, and (ii) B∗t = (1 − t)B t
1−t
, 0 ≤ t < 1, B∗1 = 0, is

distributed as Brownian bridge.
6. Let {Bt : t ≥ 0} be a standard Brownian motion starting at 0 and let {B∗t : 0 ≤

t ≤ 1} be the Brownian bridge.

(i) Show that for time points 0 ≤ t1 < t2 < · · · < tk ≤ 1,

lim
ε→0

P(Bti ≤ xi , i = 1, 2, · · · , k | −ε < B1 < ε)

= P(B∗ti ≤ xi , i = 1, · · · , k).

Likewise, for conditioning on B1 ∈ Dε = [0, ε) or Dε = [−ε, 0) the limit
is unchanged. [Hint: Check B∗t1, . . . , B∗tk and B1 are uncorrelated and hence
independent. So for fixed Borel G ⊂ R, P([B∗ ∈ F]∩[B1 ∈ G]) = P(B∗ ∈
F)P(B1 ∈ G) holds for a collection of sets containing the finite dimensional
events, the latter comprising a π−system. Use the π−λ theorem to conclude
this equality for Borel subsets of C[0, 1].]

(ii) Show that the process {B∗t : 0 ≤ t ≤ 1} is the weak limiting distribution
in (i) as ε → 0. [Hint: According to Alexandrov’s theorem1 it suffices to
check lim supε→0 P(B ∈ F | − ε < B1 < ε) ≤ P(B∗ ∈ F) for closed
subsets F of C[0, 1]. Let ρ denote the uniform metric on C[0, 1]. Then,
sup0≤t≤1 |B∗t − Bt | = |B1|, so [|B1| ≤ δ, B ∈ F] ⊂ [B∗ ⊂ Fδ] where
Fδ = {ω ∈ C[0, 1] : ρ(ω, F) ≤ δ} for ρ(ω, F) = inf{ρ(ω, η) : η ∈ F}. So
for ε < δ, P(B ∈ F | − ε < B1 < ε) ≤ P(B∗ ∈ Fδ| − ε < B1 < ε) =
P(B∗ ∈ Fδ).]

1See BCPT p.137.



Exercises 241

(iii) Show that for m∗ = inf0≤t≤1 B∗t , M∗ = sup0≤t≤1 B∗t , u < 0 < v,

P(u < m∗ ≤ M∗ ≤ v)

=
∞∑

k=−∞
exp{−2k2(v − u)2} −

∞∑

k=−∞
exp{−2[v + k(v − u)]2}.

[Hint: Express as a limit of the ratio of probabilities as in (i) and use
Exercise 17(iii) of Chapter 17. Also,Φ(x, x+ε) = ε/(2π)1/2 exp(−x2/2)+
o(1) as ε→ 0.]

(iv) Prove

P

(

sup
0≤t≤1

|B∗t | ≤ y

)

= 1+ 2
∞∑

k=1

(−1)ke−2k2 y2
, y > 0.

[Hint: Take u = −v in (iii).]
(v) P(M∗ < v) = 1 − e−2v2

, v > 0. [Hint: Use Exercise 17(iv) of Chapter 17
for the ratio of probabilities described in (i).]

7. Prove the Glivenko–Cantelli Lemma by justifying the following steps:

(i) For each t , the event [Fn(t)→ F(t)] has probability one.
(ii) For each t , the event [Fn(t−)→ F(t−)] has probability one.

(iii) Let τ(y) = inf{t : F(t) ≥ y}, 0 < y < 1. Then F(τ (y)−) ≤ y ≤ F(τ (y)).
(iv) Let Dm,n = max1≤k≤m{|Fn(τ (k/m)) − F(τ (k/m))|, |Fn(τ (k/m)−) −

F(τ (k/m)−)|}. Then, by considering the cases τ
(

k−1
m

)
≤ t <

τ
( k

m

)
, t < τ

(
1
m

)
or if t ≥ τ(1), show that supt |Fn(t) − F(t)| ≤

Dm,n + 1
m .[Hint: Check that both Fn(t) − F(t) ≤ Dm,n + 1

m and
Fn(t) − F(t) ≥ −Dm,n − 1

m by using monotonicity, followed by adding
and subtracting appropriate terms.]

(v) C =
∞⋃

m=1

m⋃

k=1

[Fn(τ (k/m)) �→ (F(τ (k/m))] ∪ [Fn(τ (k/m)−) �→
F(τ (k/m)−)]
has probability zero, and for ω ∈ Cc and each in m ≥ 1 Dm,n(ω) →
0 as n →∞.

(vi) supt |Fn(t, ω)− F(t)| → 0 as n →∞ for ω ∈ Cc.

8. (The Gnedenko–Korolyuk Formula) Let (X1, . . . , Xn) and (Y1, . . . ,Yn) be two
independent i.i.d. random samples with continuous distribution functions F and
G, respectively. To test the null hypothesis that both samples are from the same
population (i.e., F = G), let Fn and Gn be the respective empirical distribution
functions and consider the statistic Dn = supx |Fn(x) − Gn(x)|. Under the
null hypothesis, X1, . . . , Xn , Y1, . . . , Yn are 2n i.i.d. random variables with
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the common distribution F . Verify that under the null hypothesis one has the
following:

(i) The distribution of Dn does not depend on F and can be explicitly
calculated according to the formula

P
(

Dn ≤ m

n

)
= P

(

max
0≤k≤2n

|S∗k | ≤ m

)

,

where S∗k is a simple symmetric random walk starting at 0 and tied down
at 0 at k = 2n, i.e., random walk bridge. [Hint: By arranging X1, . . . ,
Xn , Y1, . . . , Yn in increasing order as Z(1) < Z(2) < · · · < Z(2n), each
Z( j) may be regarded as +1-type if Z( j) = Xi for some i , or of −1-type
otherwise, i.e.,±1-types given by θ j = 1[Z( j) is type+1]−1[Z( j) is type−
1], j = 1, . . . , 2n. By symmetry, the types θ j comprise a Bernoulli ±1-
valued exchangeable (symmetrically dependent) sequence for which all

(2n
n

)

arrangements are equally likely, and such that S∗k :=
∑k

j=1 θ j is a simple
symmetric walk tied down at S∗0 = S∗2n = 0. The key observation is that for
any value of S∗j one has 2n|Fn(x)− Gn(x)| = |S∗j | for Z( j) ≤ x < Z( j+1).
Thus 2nDn = 2n supx |Fn(x)− Gn(x)| = max j≤2n |S∗j |.]

(ii) Find the analytic expression for the probability in (i). [Hint: Use Corol-
lary 3.4 of Chapter 3 with a = b = m.]

(iii) Calculate the large-sample theory (i.e., asymptotic as n → ∞) limit
distribution of

√
nDn . See Exercise 6(iii).

(iv) Show

P

(

sup
x
(Fn(x)− Gn(x)) <

m

n

)

= 1−
( 2n

n+m

)

(2n
n

) , m = 1, . . . , n.

[Hint: Only one absorbing barrier occurs in the random walk approach.]



Chapter 21
Special Topic: Branching RandomWalk,
Polymers, and Multiplicative Cascades

The proof of the Kesten–Stigum theorem presented in Chapter 14 involved the
application of size-bias methods to branching processes. Related techniques
apply to the analysis of a natural class of multiplicative cascades, random
polymer models, and to branching random walks. In this chapter we will
introduce these three classes of models and provide some basic results for
each; specifically a proof of the Kahane–Peyriére theorem1 for multiplicative
cascades based on distinguished path analysis (size-biasing), the infinite
volume limit at critical strong disorder in Bolthausen’s2 conception of weak
and strong disorder for tree polymers, and, lastly, for the Biggins–Kingman–
Hammersley theorem3 the calculation of the speed of the leftmost particle in
branching random walk. The first example further illustrates the distinguished
path analysis, the second introduces the derivative martingale, and the third
introduces the many-to-one lemma.

Apart from their common underlying indexing by trees, a common feature shared
by the models analyzed in this chapter is that their structure is governed by the
occurrence of large deviation events. Size-bias, or tilting, of probabilities so that
deviant events become the average is a standard tool of large deviation theory4

extending at least back to Cramer and Chernoff, with important refinements of

1Kahane and Peyrere (1976).
2Bolthausen (1989, 1991)
3Biggins (1976); Kingman (1975); Hammersley (1974).
4See BCPT pp. 94–100, for an exposition to a variety of standard “concentration inequali-
ties”derived along these lines.
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Bahadur and Ranga Rao, Varadhan and others. When applied in the context of
branching it has become known as distinguished path or spine decomposition
analysis.5

The following example provides a simple example of a multiplicative cascade for
which non-degeneracy is readily obtained by previous theory.

Example 1 (Multiplicative Cascades). Statistical theories of turbulent fluids6 lead
to models for the distribution of energy dissipation by random measures which are
characteristically highly variable (singular) with regions of spatial intermittency.
A class of models which has its origins in Kolmogorov’s statistical turbulence
theory depicts the redistribution of energy as the result of a cascade of energies
from large to small scales. Inspired by earlier ideas of Richardson (1922, page 66),
Kolmogorov (1941, 1962) imagined a large scale stirring of the fluid which would
result in the splitting off of smaller scale eddies which, in turn, would continue to
split off at still smaller scales. Briefly, in the initial formulation Kolmogorov used
(deterministic) scaling analysis7 to argue that within a certain range of spatial scales
where dissipation could be ignored, referred to as the inertial range, moments of
velocity increments over lengths � would scale with exponent C p�

p
3 . However, this

was met with the historically famous objection by physicist Lev Landau that the
intermittency in velocity fluctuations on these moments had not been taken into
account by Kolmogorov. This led to the Kolmogorov (1962) and Obukhov (1962)
refined hypothesis in which the lognormal distribution is explicitly incorporated into
the cascade and yielding velocity moments having scaling exponent that can be
expressed as p

3 + μ
18 (3p − p2), where the parameter μ is sometimes referred to as

the intermittency correction. One may view these scaling exponents as the slopes of
plots of the logarithm of absolute p-th order moments of the velocity displacements
versus logarithm of the lengths of the displacement; see (21.17). The linearity is
associated with a form of multi-scale invariance.

This, in turn, led to the development of statistical cascade models of turbulence
by mathematicians such as Mandelbrot (1974a, b), Kahane (1974), Kahane and
Peyrere (1976) considered in the present treatment.

Remark 21.1. In a more recent development, She and Levesque (1994) formulated
a (deterministic) second order, non-homogeneous linear difference equation for

5 An early development in the analysis of the fine scale structure of non-degenerate cascades by
size-bias change of measure by Peyrière (1974), also motivated Waymire and Williams (1994) to
investigate the use of a distinguished path technique for proving the existence of non-degenerate
limiting cascades. Lyons et al. (1995) applied these change of measure techniques to provide the
distinguished path proof of the Kesten–Stigum theorem given in Chapter 14.
6There is also a rather large literature on the spatial structure of precipitation fields based on log-
log plots of moments of rainfall of order h as a function of spatial scale that lead naturally to
multiplicative cascade models, e.g., see Gupta and Waymire (1993); Salas et al. (2017).
7The article by Frisch (1991) is among the most readable accounts for mathematicians of the most
essential aspects of the Kolmogorov statistical theory.



21 ST: Branching Random Walk, Polymers, Cascades 245

the velocity moments. This was subsequently shown by Dubrulle (1994), and
independently She and Waymire (1995), to correspond to a statistical cascade model
in which the lognormal distribution of Kolmogorov (1962) and Obukhov (1962) is
replaced by the logPoison distribution.8 This yields velocity moments with scaling
exponent in the form αp + λ(1− β

p
3 ) with α = 1/9, β = 2/3, λ = 2.

Let us begin with the simplest of such multiplicative cascade models. Consider a
unit square U = [0, 1)2 over which an amount ε0 is distributed uniformly. Regard
ε0 as a (constant) density of a measure μ0(dx) = ε0dx on U . Now partition the unit
square into b = 4 subsquares Δ(i, j) = [i/2, (i + 1)/2) × [ j/2, ( j + 1)/2), i, j =
0, 1, and redistribute ε0 over these subsquares by i.i.d. non-negative random factors
Wi j , i, j = 0, 1, referred to as cascade generators (or weights) distributed as W ,
say, with EWi j = EW = 1, i.e., conservation on average.9 Then one obtains a new
(random) measure on U given by

μ1(dx) = ε0

∑

i, j∈{0,1}
Wi j1Δi j (x)dx. (21.1)

This process may be iterated by similarly partitioning each Δi j into four subregions
and redistributing the respective amounts ε0Wi j over Δi j by i.i.d. random factors
distributed as W , to obtain a sequence of random measures μ0, μ1, μ2, . . . . The
binomial cascade with parameter p ∈ (0, 1) is defined by taking

W =
{

1
p , with probability p,

0 with probability 1− p.

At the n-th scale there are 4n pixels Δ of area 1/4n each and having (random)
measure 0 if a factor of 0 occurs in the cascade path defining Δ or p−n × 4−n if
there are no 0’s. Thus the total measures μn(U ) take the form

Zn = μn(U ) = (
1

p
)nε0(

1

4
)n Xn = ε0

Xn

(4p)n
, n = 0, 1, 2, . . . , (21.2)

where Xn counts the number of nonzero offspring at the n-th generation; i.e., at each
generation there are b = 4 trials, each one of which has probability p of a nonzero
cascade factor, independently of the other three. Thus {Xn : n = 0, 1, 2, . . . }
is a Bienaymé–Galton–Watson simple branching process starting from a single

8Some early laboratory investigations into the scope, validity, and experimental/statistical chal-
lenges can be found in Chavarria et al. (1995), Politano and Pouquet (1995), Benzi et al. (1996),
Molchan (1997), Ossiander and Waymire (2002), Budaev (2008), as well as in the more recent
Zhao et al. (2021).
9In the context of statistical turbulence models, the lack of sample pathwise energy conservation
is sometimes argued from the perspective that hot wire measurements involve velocities in one-
dimensional projections of a three-dimensional velocity field.
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progenitor and having binomial offspring distribution with parameters b = 4, p,
i.e., f (k) = (4

k

)
pk(1 − p)4−k, k = 0, 1, 2, 3, 4. In general the product along any

path
∏n

j=1 Wγ | j → 0 a.s. as n → ∞ for i.i.d. mean one non-negative random
variables distributed as W (Exercise 1). However, there are uncountably many paths
in the limit. Thus one may expect that if the “amount of branching”as determined
by the partitioning parameter b = 4 is “suitably large”relative to the multiplicative
factors W , then there will be a non-trivial limiting cascade measure with positive
probability. A straightforward application of the super-criticality criteria for survival
of a branching process (Theorem 9.1), together with the Kesten–Stigum theorem
(Theorem 14.2), yields that the fine scale limit limn→∞ Zn defined by (21.2) is
positive with positive probability if and only if 4p > 1. The general theorem10 is
as follows. For a natural number b ≥ 2, referred to as the branching parameter, let

T = ∪∞n=0{0, 1, . . . , b − 1}n, ∂T = {0, 1, . . . , b − 1}∞, (21.3)

where {0, 1, . . . , b − 1}0 = {∅} is distinguished as a root vertex of height |∅| = 0.
Let λ(dt) = δ∞1

b
(dt) denote the product measure; i.e., λ may be viewed as the

distribution of an i.i.d. sequence of uniformly distributed random variables on
{0, 1, . . . , b − 1} or, equivalently, as the Haar measure on ∂T viewed as a compact
abelian group for coordinate-wise addition mod b and the product topology. For
v = (v1, . . . , vk) ∈ T, write |v| = k to denote the (genealogical) height of v, with
|∅| = 0. Let W∅ = 1, and let {Wv : ∅ �= v ∈ T} be a family of mean one, i.i.d.
positive random variables on a probability space (Ω,F , P) for weighted b-ary trees.
While the offspring distribution is deterministic, the weights are random variables.
It is convenient to take the canonical product space model on Ω = [0,∞)T for i.i.d.
non-negative random variables indexed by the tree T.

Define a sequence μn, n ≥ 1, of random measures on the Borel σ -field B of ∂T
for the product topology, via the specification that μn << λ with Radon-Nikodym
derivative on Fn ⊗ B, where Fn = σ(Wv : |v| ≤ n), given by

dμn

dλ
(t) = Qn(t) =

n∏

j=1

Wt | j , t ∈ ∂T. (21.4)

It is sometimes convenient to regard the cascade as a random measure on the unit
square or unit interval partitioned using the parameter b; see Figure 21.1 for a
depiction of equal subdivisions (b = 2) of the unit interval.

Theorem 21.1 (Kahane–Peyriére). The vague limit μ∞ = limn μn exists almost
surely. Moreover Eμ∞(∂T) > 0 if and only if EP W ln W < ln b.

10This theorem has been refined from a number of perspectives, including general offspring
distributions and statistical dependence between cascade generators, e.g., see Peyriére (1977); Burd
and Waymire (2000); Waymire and Williams (1996).



21 ST: Branching Random Walk, Polymers, Cascades 247

Fig. 21.1 Realization as a
One-Dimensional Cascade
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Proof. The proof is in two parts. In the first part we establish the a.s. existence of
the vague limit measure μ∞. The second part is devoted to the non-triviality of the
limit. For a.s. existence, let f ∈ C(∂T) and define

Mn( f ) =
∫

∂T

f (t)μn(dt), n ≥ 1.

One can see that Mn( f ) is a martingale by first noting that for each s ∈ ∂T, the
independence and mean one property yield

E(

n+1∏

j=1

Ws| j |Fn) =
n∏

j=1

Ws| j , (21.5)

i.e., the product along a fixed path is a martingale. Thus, integrating (21.5) over the
paths s with respect to λ(ds), it follows that

E(Mn+1( f )|Fn) =
∫

∂T

f (s)E(
n+1∏

j=1

Ws| j |Fn)λ(ds)

=
∫

∂T

f (s)
n∏

j=1

Ws| jλ(ds)

= Mn( f ). (21.6)

So Mn( f ), n ≥ 1, is a martingale. Note that this includes the total mass μn(∂T) =
Mn(1), n ≥ 1. In addition E|Mn( f )| ≤ || f ||∞. Thus, Mn( f ), n ≥ 1, is a bounded
martingale. By the martingale convergence theorem, M∞( f ) = limn→∞ Mn( f )
exists a.s. and in L1 for each f ∈ C(∂T). Restricting to a countable dense set D of
f ∈ C(∂T), including f ≡ 1, one obtains almost surely a densely defined bounded,
positive linear functional f → M∞( f ); i.e., removing a set Ω0 of probability zero,
Mn( f+g) = Mn( f )+Mn(g), n ≥ 1, f, g ∈ D, onΩ\Ω0, and therefore in the limit
as n → ∞. Extend M∞ on Ω \ Ω0 to a bounded linear functional on C(∂T) and
apply the Riesz representation theorem to obtain the a.s. defined random measure
μ∞(dt). To check that μ∞(dt) is the vague limit measure11 for f ∈ C(∂T), and
ε > 0, there is an fε ∈ D such that || f − fε ||∞ < ε. Thus for ω ∈ Ω \Ω0,

lim sup
n,m

|
∫

∂T

f (t)μn(dt, ω)−
∫

∂T

f (t)μm(dt, ω)|

≤ ε lim sup
n,m

{μn(ω, ∂T)+ μm(ω, ∂T)}

11A stronger version of this result for all bounded measurable functions f was obtained by Kahane
(1989). Also see Waymire and Williams (1995).
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+ || fε ||∞ lim sup
n,m

|μn(ω, ∂T)− μm(ω, ∂T)|

= εB(ω), (21.7)

where B(ω) = lim supn,m(μn(ω, ∂T) + μm(ω, ∂T)) < ∞ since 1 ∈ D. Letting
ε ↓ 0, one sees that the sequence is Cauchy for all f ∈ C(∂T) with probability one.

The second part of the proof is to obtain the non-degeneracy criteria for μ∞.
For this, the distinguished path method may now be applied as follows: Similarly
to the proof of the Kesten–Stigum theorem, extend the cascade model (weighted
b-ary tree) on (Ω, P) to a model on the space of weighted b-ary trees ω with
distinguished path weights along uniformly selected paths t = γ , such that the
weights at vertices v ∈ γ along the path are i.i.d. with a (mean) size-biased
probability distribution q(dx) = x P(W ∈ dx) on [0,∞), while those of the
path are i.i.d., independent of weights along the path, having the given mean one
distribution p(dx) = P(W ∈ dx) on [0,∞). Specifically define a probability Q on
the space of trees with distinguished path weights, for the filtration Fn , by

∫

Ω×∂T
g(ω, t)Q(dω, dt) = EP

∫

Ω×∂T
g(ω, t)μn(dt) = EP

∫

∂T
g(ω, t)Qn(t)λ(dt),

(21.8)
for bounded, Fn × B-measurable g on Ω × ∂T. Then, reversing the order of
integration via Fubini–Tonelli, one may write

Q(dω × dt) = Pt (dω)λ(dt), (21.9)

where Pt << P on Fn , with

Pt (dω) = Qn(t)P(dω). (21.10)

One may easily check (Exercise 2) for arbitrary fixed t ∈ ∂T, the weights
Wt | j , j = 1, 2, . . . are i.i.d. with size-bias distribution defined by EPt g(Wt | j ) =
EP Wt | j g(Wt | j ) under Pt , for arbitrary bounded measurable function g, while off the
t-path, they are i.i.d. with EPt g(Wv) = EP g(Wv), v �= t | j , for any j . In particular
Pt (Wt | j = 0) = 0 for any path t . Moreover, the marginal projection of Q onto the
space Ω of weighted b-ary trees may be expressed by integrating over all uniformly
selected paths as

P∗(dω) := Q⊗ π−1
Ω (dω) =

∫

∂T

Pt (dω)λ(dt). (21.11)

As in the proof of the Kesten–Stigum theorem, first departure bounds are used to
determine conditions for P∗ << P vs P∗ ⊥ P for the Lebesgue decomposition
given by (Fig. 21.2)

P∗(dω) = μ∞(∂T)1[μ∞(∂T) <∞]P(dω)+ 1[μ∞(∂T) = ∞)]P∗(dω).
(21.12)
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γ|0

P-Cascade P-Cascadeγ|1

P-Cascadeγ|2

P-Cascade P-Cascade γ|3 P-Cascade

First Departure from γ|j
at j = 2

Fig. 21.2 First Departure Cascade Bounds

Specifically, one has first departure bounds with respect to an arbitrary fixed path
t = γ , given by factoring out the common part and denoting concatenation of paths
by ∗,

b−n
n∏

j=1

Wγ | j

≤ μn(∂T)

≤
n∏

j=1

Wγ | j b−n +
n−1∑

j=1

j∏

i=1

Wγ |i b− j
∑

|v|=n− j,v|1�=γ |( j+1)

n− j∏

i=1

Wγ | j∗v|i b−(n− j), (21.13)

where

Mn =
n−1∑

j=1

b−(n− j)
∑

|v|=n− j,v|1 �=γ |( j+1)

n− j∏

i=1

Wγ | j∗v|i (21.14)

is a bounded non-negative submartingale under conditioning along the path
σ(Wγ | j : j = 0, 1, 2, . . . ), with respect to the filtration

Fn = σ {Wv, |v| ≤ n}. (21.15)
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Bounding the common part in the first departure inequality one also has

b−n
n∏

j=1

Wγ | j ≤ μn(∂T) ≤
n∏

j=1

Wγ | j b−n + (sup
j≤n

b− j
j∏

i=1

Wγ |i )Mn . (21.16)

For the necessity of EP W ln W < ln b for non-triviality of μ∞, suppose that
EP W ln W ≥ ln b. First consider the case EP W ln W > ln b and Pt (W =
b) < 1. For arbitrary fixed path weights along t = γ , it follows from the first
departure lower bound and strong law of large numbers that Pγ -a.s., μn(∂T) ≥
exp{n(∑n

j=1
ln Wγ | j

n − ln b)} → ∞. In the case EP W ln W = ln b and Pt (W =
b) < 1, one has Pt -a.s. lim supn→∞

∑n
j=0{ln Wt | j − ln b} = ∞ by Chung–

Fuchs12 recurrence criteria for random walk along the t-path. Since the limit
μ∞(∂T) exists, this is enough to assert that in either case, Pt (μ∞(∂T) = ∞) = 1,
and by integrating out paths t , the triviality of μ∞ follows from the Lebesgue
decomposition, i.e., P(μ∞(∂T) = 0) = 1. Finally the special case Pt (W = b) = 1,
i.e., P(W = b) = 1

b = 1 − P(W = 0) follows by branching process extinction of
a critical binomial offspring distribution with parameters b, p = 1

b , as treated at the
outset. To see that EP W ln W < ln b is also sufficient for a non-trivial limit measure,
fix a path t = γ ∈ ∂T. It again follows from the strong law of large numbers that

Pγ -a.s., (b− j ∏ j
i=1 Wγ |i )

1
j → 1

b eEP W ln W < 1. Using the first departure upper
bound one has that Pγ -a.s., μ∞(∂T) < ∞. Integrating out t = γ , it follows that
μ∞(∂T) <∞ P∗-a.s. Thus, by Lebesgue decomposition EPμ∞(∂T) = 1. �

Note that in the above example with b = 4, and Bernoulli W = 1
p with

probability p, one has EP W ln W = p 1
p ln 1

p < ln 4, if and only if 4p > 1, as
previously shown using the usual non-extinction condition for branching processes
(also see Exercise 3).

Remark 21.2. Physics aside, let us close with a brief consideration of the log− log
linearity of moments versus length scale � = b−n = |Δn|, or n = log �

log b−1 , under
conditions for which a nonzero limiting cascade measure and indicated moments
exist.13 Namely,

logμp∞(Δn) = (logEW p − p log b)n + logEZ p∞
= c(p log b − logEW p) log �+ logEZ p∞, (21.17)

where c = 1/ log b > 0; i.e., one has log− log linearity with slope given by m(p) =
c(p log b − logEW p).

12See BCPT p.123, 134.
13See Guivarc’h (1990), Barral and Jin (2014) in this regard.
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Fig. 21.3 2n Polygonal Paths
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Example 2 (Tree Polymer). This class of models builds on the notion of multiplica-
tive cascades with generators typically expressed as W = 2e−Y , b = 2, and with
Ee−Y = 1/2; i.e., {Yv : ∅ �= v ∈ T} is a binary tree-indexed family of i.i.d. real-
valued random variables with Ee−Y = 1/2, Y∅ = 0. In this case the normalization
of μn to a probability measure on ∂T = {1, 2}∞ is given by the so-called partition
function

Zn =
∑

|t |=n

n∏

j=1

e−Yt | j =
∑

|t |=n

e−Hn(t), (21.18)

where Hn(t) =∑n
j=0 Yt | j , t ∈ ∂T denotes a tree path (Fig. 21.3).

Tree polymers may be viewed as random probability distributions of the polyg-
onal paths j → t | j, j = 0, 1, . . . , for t ∈ ∂T selected according to the normalized
probability formally given by

p∞(dt) = lim
n→∞ Z−1

n μn(dt). (21.19)

The nature of this limit presents an interesting problem in itself. In the case that
Z∞ = limn→∞ Zn > 0, referred to as weak disorder, p∞(dt) is merely the cascade
measure μ∞(dt) normalized to a probability by Z∞. The disorder is said to be
strong disorder if Z∞ = 0 a.s. Complete determination of the limit (21.19) in
the case of strong disorder is outside the scope of this text.14 However, it hinges

14The existence of p∞(dt) as a weak limit in probability in the critical strong disorder case
EP W ln W = 2 was proven by Johnson and Waymire (2011), and in Barral et al. (2014), while the
non-critical strong disorder case EP W ln W > ln 2 is covered in Barral et al. (2012); and by Dey
and Waymire (2015).
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on the introduction of another important martingale that arises in a wide variety
of branching contexts, namely the derivative martingale15 D∞ defined as the a.s.
(positive) limit of the following martingale16 In the case of critical strong disorder,
i.e., EP W ln W = ln 2, also referred to as the boundary case, the derivative
martingale D∞ is determined by an a.s. limit of the sequence

Dn =
∑

|t |=n

Hn(t)e
−Hn(t), n = 1, 2, . . . . (21.20)

Dn, n ≥ 1 is easily checked to be a (signed) martingale (Proposition 21.2 below).
Under the additional moment assumption, EY 2e−Y < ∞, the a.s. limit D∞ can be
shown to exist,18 however, this requires a deeper analysis involving renewal theory
and ladder random variables (presented in Chapter 25) than is possible from a simple
application of the martingale convergence theorem (see Exercise 11). On the other
hand, assuming it exists, one can show D∞ ≥ 0 a.s. (Proposition 21.3 below). In
fact, the event [D∞ > 0] is an inherited event, and hence has probability zero or
one (recall Proposition 12.6) of Chapter 12).

Remark 21.3. For the origins of the weak and strong disorder nomenclature, note
that in the case Y = 0 a.s., i.e., no disorder, the polygonal paths are simple symmet-
ric random walk paths. In the context of polymers, one views the randomness of their
distributions as the result of impurities governing displacements. If the disorder is
sufficiently weak (relative to the branching rate), then the usual limit theorems, e.g.,
law of large numbers, central limit theorem, are expected to apply as they would in
the absence of disorder. However, if the impurities are sufficiently strong, then new
limit theorems can be expected. With this jargon the condition EP W ln W < ln b
for existence of a non-trivial limit given by the Kahane–Peyriére theorem is the
requirement that the branching rate be sufficiently large relative to the disorder.

Remark 21.4. From a perspective of fixed points to a special class of random
iterations, it is noteworthy that the distributions of both Z∞ and D∞ provide fixed
point solutions of the so-called smoothing transformation19 (see Exercise 7).

In preparation for the next theorem note that the critical strong disorder
conditions EW = 1 and EP W ln W = ln 2 for the multiplicative cascade model
correspond to Ee−Y = 1/2 and EY e−Y = 0, respectively, in the context of the tree
polymer model.

15Biggins and Kyprianou (2004).
16See Kyprianou (1998), for historic background on the derivative martingale in the broader
context of branching Brownian motion and branching random walk. In the particular case of
branching Brownian motion and the Fisher-KPP equation17 (see Exercise 10, Chap 28) Lalley
and Selker (1987), prove it’s a.s. existence without referring to it by name.
17This equation gets its name from Fisher (1937) and, independently, Kolmogorov et al. (1937).
18See Chen (2015) for the complete result.
19Holley and Liggett (1981); Durrett and Liggett (1983).
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Theorem 21.2. Assume Ee−Y = 1/2 and EY e−Y = 0. Then Zn, n ≥ 1 is a positive
martingale, and Dn, n ≥ 1, is a martingale, with respect to Fn = σ {Yv : |v| ≤ n},
n ≥ 1.

Proof. Since one may express the partition function as a total cascade mass for
W = 2e−Y , b = 2, namely Zn = μn(∂T) ≡ Mn(1), the martingale property
follows immediately from the first part of the proof of Theorem 21.1. One may argue
similarly for the martingale property of Dn . Namely, it is easy to check from the
independence and the critical strong disorder (or boundary) conditions Ee−Y = 1/2,
EY e−Y = 0, that for each fixed path t ∈ ∂T,

E(2n+1
n+1∑

i=1

Yt |i
n+1∏

j=1

e−Yt | j |Fn)

= 2n+1
n∑

i=1

Yt |i
n∏

j=1

e−Yt | j 1

2
+ 2n+1

n∏

j=1

e−Yt | jE(Yt |n+1e−Yt |n+1 |Fn)

= 2n
n∑

i=1

Yt |i
n∏

j=1

e−Yt | j . (21.21)

That is, 2n ∑n
i=1 Yt |i

∏n
j=1 e−Yt | j is a martingale. Thus, as was done for Zn ,

integrating (21.21) over the paths with respect to λ(dt), and letting

Δn(t1, . . . , tn)={s ∈ ∂T : s j=t j , 1 ≤ j ≤ n}, (t1, . . . , tn) ∈ {0, 1, . . . , b − 1}n,

yields the martingale property of Dn, n ≥ 1, since

∫

∂T

n∑

i=1

Ys|i
n∏

j=1

e−Ys| jλ(ds) = 2n
∫

∪|t |=nΔn(t)

n∑

i=1

Ys|i
n∏

j=1

e−Ys| jλ(ds)

= 2n
∑

|t |=n

n∑

i=0

Yt |i
n∏

j=1

e−Yt | j 2−n = Dn . (21.22)

�
Proposition 21.3. Assume Ee−Y = 1

2 , and EY e−Y = 0. Then one has that
limn→∞ inf|t |=n

∑n
j=1 Yt | j = ∞ a.s. In particular Dn ≥ 0 a.s. for all n sufficiently

large.

Proof. Let Zn =∑
|t |=n e−

∑n
j=1 Yt | j . Since Zn, n ≥ 0, is a non-negative martingale

one has 0 ≤ Z∞ = limn→∞ Zn exists a.s.. Moreover, EZ∞ ≤ 1 by Fatou’s lemma.
Let

L = lim sup
n→∞

e− inf|t |=n
∑n

j=1 Yt | j



21 ST: Branching Random Walk, Polymers, Cascades 255

≤ lim sup
n→∞

∑

|t |=n

e−
∑n

j=1 Yt | j

= lim sup
n→∞

Zn = Z∞.

In particular EL ≤ 1. Now observe that L satisfies the stochastic recursion (see
Exercise 12)

L =dist L1e−Y1 ∨ L2e−Y2 , (21.23)

where L1, L2 are independent, identically distributed as L and independent of
Y1,Y2. So, from (21.23), one has EL ≤ E(L1e−Y1 + L2e−Y2) = EL , with
strict inequality unless L = 0 a.s. Thus, L = 0 a.s. This proves the asser-
tion that limn→∞ inf|t |=n

∑n
j=1 Yt | j = ∞ a.s. From here one sees that Dn ≥

(inf|s|=n
∑n

j=1 Ys| j )
∑
|t |=n

∏n
i=1 e−Yt |i > 0 a.s. for all n sufficiently large. �

Corollary 21.4. [lim infn→∞ Dn > 0] has probability zero or one.

Proof. In view of Proposition 12.6 of Chapter 12, it suffices to show that
[lim infn→∞ Dn = 0] is an inherited event. That is, it occurs for all finite subtrees,
and if this event occurs for the infinite tree rooted at < 1 >, then it occurs for any
infinite subtree rooted at an offspring of < 1 >. To see inheritance, fix arbitrary
v ∈ ∪∞�=0{1, 2}�, say |v| = k, and for n > k, let

Dn,v =
∑

|t |=n,t≥v

n∑

j=k+1

Yt | j e−
∑n

i=k+1 Yt |i ,

where t ≥ v means that t |k = v. Then, using the previous theorem, one has a.s.
lim infn→∞ Dn,v ≥ 0. Now, for |v| = 1,

Dn ≥
∑

|t |=n,t≥v
Hn(t)e

−Hn(t)

= e−H1(v)Dn,v + H1(v)e
−H1(v)

∑

|t |=n,t≥v
e−

∑n
j=2 Yt | j . (21.24)

Since this is a case of critical strong disorder, the liminf for the second term on the
right is a.s. zero. Thus

lim inf
n→∞ Dn ≥ e−H1(v) lim inf

n→∞ Dn,v ≥ 0. (21.25)

In particular, if lim infn→∞ Dn = 0, then lim infn→∞ Dn,v = 0; i.e., the event is
inherited. �
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As already noted, the derivative martingale has proven to be a powerful tool for
the analysis of polymers and branching random walks in the case of strong disorder.
For example, it can be shown that in the critical strong disorder case there is a

sequence of positive constants20 an = n− 1
2 , n ≥ 1, and Zn/an Dn → c > 0 in

probability (but not a.s.) as n → ∞ Using this one may re-scale to show21 that
Z−1

n μn(dt) converges weakly in probability to p∞(dt), where

p∞(Δm(v)) =
D∞(v)

∏m
j=1 Yv| j

∑
|u|=m D∞(u)

∏m
j=1 Yu| j

, (21.26)

where Δm(v) = {t ∈ {1, 2}∞ : t |m = v|m}, v ∈ ∪∞m=0{1, 2}m , and D∞(u) denotes
the derivative martingale for the subtree rooted at u.

Example 3 (Branching Random Walk). Let us consider a branching random walk
on the real-number line with initial ancestor at Y0 = 0, having two children22 in
the first generation displaced by i.i.d. amounts X1, X2. Each generation repeats
this birth-displacement process. The second generation consists of four random
walkers at positions Yi, j = Xi + Xi, j , i, j = 1, 2, for i.i.d. displacements
X1, X2, X1,1, X1,2, X2,1, X2,2. The construction proceeds recursively. Let {Yv :
|v| = n} be the locations of the 2n walkers at the nth generation. Y0 = 0,Y1 =
X1,Y2 = X2,

Yv =
n∑

j=0

Xv| j , v ∈ {1, 2}n, n = 1, 2, . . . ,

where v|0 = 0, v| j = (v1, . . . , v j ), j ≤ n, for v = (v1, v2, . . . , vn) ∈ {1, 2}n .
Also the genealogical length of v is denoted by |v| = n. To single out a fixed
but arbitrary path let 1 j = (1, 1, . . . , 1) be a leftmost path of length j , and
Sn =∑n

j=0 X1 j , S0 = 0.

The following general lemma23 summarizes a size-biasing tool often employed
for such branching random walk computations.

Lemma 1 (Many-To-One-Formula). Fix arbitrary λ > 0 such that ψ(λ) =
lnE

∑
|v|=1 e−λYv <∞. Then for any non-negative Borel measurable function g,

20See Aidekon and Shi (2014).
21See Johnson and Waymire (2011).
22The example treated here illustrates the theory initiated by Hammersley, Kingman, and Biggins,
but is less comprehensive. See Biggins (2010), for a historical and more comprehensive review of
these developments, as well as more recent results.
23This simple formula and its generalizations arise in a variety of “branching”contexts, but its
origins appear to be generally unattributed.
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E

∑

|v|=n

g(Yv) = E{eλŜn+nψ(λ)g(Ŝn)},

where Ŝ0 = 0, {Ŝn : n = 0, 1, . . . } is a random walk with the size-biased
distribution of i.i.d. displacements defined by the specifications that:

E f (Ŝ1) = E

∑

|v|=1

e−λYv

E
∑
|u|=1 e−λYu

f (Yv), (21.27)

for all non-negative Borel measurable functions f .

Proof. The proof is by induction. For n = 1, this is the definition of the size-bias
distribution defining Ŝ1. Specifically,

E

∑

|v|=1

g(Yv)

= E
(
g(X1)+ g(X2)

)

= E
( e−λX1

E(e−λX1 + e−λX2)
eλX1+ψ(λ)g(X1)+ e−λX2

E(e−λX1 + e−λX2 )
eλX2+ψ(λ)g(X2)

)

= EeλŜ1+ψ(λ)g(Ŝ1).

Assume the formula holds for n and condition on the first generation of branching
to get, using the substitution formula for conditional expectation,

E

∑

|v|=n+1

g(Yv) = E

∑

|u|=n

{g(X1 + Y1u)+ g(X2 + Y2u)}

= EeλŜn+nψ(λ)[g(X1 + Ŝn)+ g(X2 + Ŝn)]
= EeλŜn+1+(n+1)ψ(λ)g(X̂1 + Ŝn)

= EeλŜn+1+(n+1)ψ(λ)g(Ŝn+1),

where X̂1 is independent of Ŝn with the distribution defined by (21.27). �
Remark 21.5. One may notice that in the present framework ψ(λ) =
lnE

∑
|v|=1 e−λYv = ln 2Ee−λX1 < ∞. However, the pair X1 and X2 need not

be i.i.d. for the many-to-one lemma. The branching random walk framework may
be generalized accordingly to the case of i.i.d. displacement vectors distributed as
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(X1, X2). Also the binary branching random walk is readily generalizable to any
supercritical branching process in place of the binary tree.24

Notice that using the right-side of the many-to-one formula with g(x) = e−λx ,
one has after a tiny bit of preparatory algebra

EŜ1 = E
( X1e−λX1

E(e−λX1 + e−λX2)
+ X2e−λX2

E(e−λX1 + e−λX2)

) = −ψ ′(λ). (21.28)

As a warm-up, using Jensen’s inequality and bounding the maximum by the sum,
followed by the many-to-one formula, one has

E
(− min|v|=n

λYv
) = E ln emax(−λYv)

≤ lnEemax|v|=n(−λYv)

≤ lnE
∑

|v|=n

e−λYv

= ln enψ(λ) = nψ(λ). (21.29)

Thus, for any λ > 0,

1

n
E min|v|=n

Yv ≥ −ψ(λ)
λ

,

and therefore, for every n,

1

n
E min|v|=n

Yv ≥ sup
λ>0

−ψ(λ)
λ

= − inf
λ>0

ψ(λ)

λ
. (21.30)

In fact, a more judicious application of the many-to-one formula provides a tool
for the speed of the leftmost (or right-most) particle in the branching random walk
defined as follows.

Definition 21.1. The speeds (rates) of the left and right-most particles of the
branching random walk are given by the almost sure limits

r = lim
n→∞ min|v|=n

Yv
|v| , R = lim

n→∞ max|v|=n

Yv
|v| , (21.31)

respectively, provided the limits exist.

24The monograph by Shi (2012) features the utility of distinguished path analysis for branching
random walk in this more general framework.
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The point of the following result is the computation of the extremal particle
speeds using the size-biasing reflected in the many-to-one formula under the
assumption that the speeds exist as almost sure and L1-limits. This is a bit weaker
statement than also showing the existence25 of the particle speed limits.

Theorem 21.5 (Biggins–Kingman–Hammersley). Let

ψ(λ) = lnE(e−λX1 + e−λX2) = ln(2Ee−λX1).

Assume ψ(λ) < ∞ for some λ > 0. Also assume that the limit defining the speed
r of the leftmost particle exists almost surely and in L1. Then

lim
n→∞ min|v|=n

Yv
|v| = γ := − inf

λ>0

ψ(λ)

λ

.

Proof. That γ is a lower bound on the speed r follows from the calculation (21.30)
under the hypothesis of the theorem. For the reverse inequality it suffices to check
that there is an N = N (ε) such that

lim
k→∞

1

k N
min|v|=k N

Yv ≤ γ + ε

for all sufficiently small ε > 0. Construct a branching random walk T̃ such that the
first generation of T̃ is all v in the N th generation of T such that Yv ≤ (γ + ε)N .
More generally, for n ≥ 1, if v is in the nth generation of T̃ , then its offspring in the
(n + 1)st generation of T̃ consists of u in the (n + 1)N th generation of T that are
descendants of v in T , and

Yv − Yu ≤ (γ + ε)N .

With t to be determined, using the many-to-one formula,

μT̃ = E

∑

|v|=N

1[Yv ≤ (γ + ε)N ]

= EeλŜN+Nψ(λ)1[ŜN ≤ (γ + ε)N ]. (21.32)

Now choose λ > 0 such that

ψ(λ)

λ
> ψ ′(λ) > inf

s>0

ψ(s)

s
− ε = −(γ + ε).

25See Shi (2012)
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Namely, take λ < inf{s > 0 : ψ(s)s = infr>0
ψ(r)

r }. Then

EŜ1 = −ψ ′(λ) < γ + ε.

Now choose a ∈ (ψ ′(λ), ψ(λ)
λ
) to get

μT̃ = EeλŜN+Nψ(λ)1[ŜN ≤ (γ + ε)N ]
≥ e(−aλ+ψ(λ))N P(−aN ≤ ŜN ≤ (γ + ε)N ). (21.33)

Then,

EŜ1 = −ψ ′(λ) ∈ (−a, γ + ε).

So, in the limit N →∞,

P(−aN ≤ ŜN ≤ (γ + ε)N )→ 1, (21.34)

and

e(−a+ψ(λ)
λ

)N →∞.

In particular there is an N sufficiently large that μT̃ > 1. By super-criticality of
the branching process, it will survive to every generation. Thus, in view of the
bound (21.34), under the hypothesis of the theorem one has

lim
k→∞

1

k N
min|v|=k N

Yv ≤ γ + ε.

�

Exercises

1. Show that apart from the trivial case of random variables with a.s. constant
value one, the infinite product of i.i.d. mean one non-negative random variables
is a.s. zero. [Hint: First consider the case when the value 0 has positive
probability, otherwise take logarithms and apply the strong law of large
numbers, followed by strict Jensen inequality.]

2. Verify that for arbitrary fixed t ∈ T, the weights Wt | j , j = 1, 2, . . . are
i.i.d. with size-bias distribution EPt g(Wt | j ) = EP Wt | j g(Wt | j ) under Pt , for
arbitrary bounded measurable function g, while off the t-path, they are i.i.d.
with EPt g(Wv) = EP g(Wv), v �= t | j , for any j .
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3. Consider the Bienaymé–Galton–Watson branching process {Xn : n ≥ 0},
X0 = 1, with binomial offspring distribution with parameters b, p. (i) Show
that the size-bias distribution is binomial with parameters b−1, p. (ii) Consider
the multiplicative cascade with Bernoulli distributed weights W = 1

p with

probability p, else W = 0. Show that W = 1
p a.s. under mean size-bias of

the distribution of W . (iii) Show that the submartingale Mn coincides in the
respective first departure bounds (21.13) and in Proposition 14.4 for the Kesten–
Stigum theorem.

4. Assuming the limit exists almost surely and in L1, determine the speed R of
the right-most particle. [Hint: Consider the leftmost particle for the branching
random walk with −Yv in place of Yv .]

5. Determine the speeds of the left and right-most particles in a Gaussian
branching random walk with mean zero and variance σ 2 > 0.

6. Consider the multiplicative cascade model in which the cascade generators are
W are uniformly distributed on [0, 2]. Show that the (i) cascade survives almost
surely and (ii) Z∞ = μ∞(∂T) has a Gamma distribution. (iii) Extend (ii) this
to mean one Beta distributed generators on [0, 2].

7.

(i) Show that Z∞ = μ∞(∂T) is a non-negative solution (fixed point) of
Z∞ =dist 1

b

∑b−1
j=0 W j Z ( j)∞ , where Z ( j)∞ , j = 0, 1, . . . , b − 1, is i.i.d.,

independent of W0, . . . ,Wb−1, and distributed as Z∞.
(ii) Assuming that the almost sure limit exists, show that the derivative

martingale D∞ is another solution in the context of random polymers.

8. (Biggin’s theorem26) Consider the branching random walk, and define
ϕ(λ) = E

∑
|v|=1 e−λYv . Also assume ϕ(a) < ∞ for some a ∈ R.

(i) Show that Zn(a) = ϕ−n(a)
∑
|v|=n e−aYv , n = 1, 2, . . . is a positive

martingale with almost sure limit Z∞(a). (ii) Assume further that ϕ′(a) :=
E
∑
|v|=1 Yve−aYv exists and is finite. Use the distinguished path analysis

for multiplicative cascades to show that EZ∞(a) = 1 if and only if
E
∑
|v|=1 e−aYv ln+(

∑
|u|=1 e−aYu ) <∞ and aϕ′(a) < ϕ(a) lnϕ(a).

9. (General Many-to-one Formula) Show that the many-to-one formula
extends as follows: For any non-negative Borel measurable function g,

E
∑
|v|=n g(Y1,Y2, . . . ,Yv) = E{eλŜn+nψ(λ)g(Ŝ1, Ŝ2, . . . , Ŝn)}, where Ŝ0 = 0,

{Ŝn : n = 0, 1, . . . } is a random walk with the size-biased distribution of i.i.d.
displacements defined by the specifications (21.27).

10. Assuming critical strong disorder, show that EDn = 0, where Dn, n ≥ 1, is the
derivative martingale.

11. Consider the tree polymer in which Y is normally distributed with mean μ and
variance σ 2. (i) Show critical strong disorder if and only if μ = σ 2. (ii) Assum-

26While this result is proven for more generally defined branching random walks in Biggins (1977),
the proof suggested here using distinguished path analysis is due to Lyons (1997).
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ing critical strong disorder show that E
∑
|t |=n Hn(t)+e−Hn(t) = c

√
n. [Hint:

Condition the j-th term of Hn(t)+ = ∑n
j=1 Yt | j1[Hn(t) > 0]∏n

i=1 e−Yt |i

on Yt | j . Perform the indicated integrations, including an application of Fubini
theorem in the final expected value.]

12. Define for n ≥ 1, Ln = e− inf|t |=n
∑n

j=1 Yt | j , and show that Ln+1 = e−Y1 L(1)
n ∨

e−Y2 L(2)
n , where L(

n1), L(2)
n are independent of Y1,Y2, as well as mutually

independent and distributed as Ln . Show that (21.23) follows from this.
13. Let μ denote the mean displacement for the branching random walk. (a)

Compute the large deviation rate for 2n independent random walkers: That is,
show that I1(x) = ln 2 − I0(x) = limn→∞ 1

n ln P(max1≤ j≤2n
∑n

i=1 X ( j)
i >

nx), for x > R + μ in the case that X ( j)
i are i.i.d. distributed as Xv , where

I0(x) is the large deviation rate for a single random walk.[Hint: The upper
bound on P(max1≤ j≤2n

∑n
i=1 X ( j)

i > nx) is straightforward by sub-additivity
of probability and the Cramér-Chernoff large deviation theorem for a single
random walker, (see BCPT, p. 94). For the lower bound, use the inequality
1 − (1 − s)t ≥ 1 − e−st ≥ st (1 − st), s, t > 0, and the Cramér-Chernoff
large deviation theorem. ] (b) Show27 that the large deviation rate I2(x) ≤
ln 2 − I0(x) = I1(x), x > R + μ, for the corresponding branching random
walk. [Hint: Use sub-additivity of the probability to see the same I1(x) as an
upper bound.]

14. (Gantert-H ofelsauerit Stochastic Order Lemma) (a) Suppose that {Ui }i≥1 and
{Vi }i≥1 are two independent sequences of random variables, and the Vi , i ≥
1, are identically distributed. Show for any k ≥ 1, x ∈ R, max1≤i≤k(Ui +
Vi ) is stochastically smaller than max1≤i≤k(Ui + V1); i.e., P(max1≤i≤k(Ui +
Vi ) ≤ x) ≤ P(max1≤i≤k(Ui + V1) ≤ x) for all x . (b) Show that the right-most
particle in the branching random walk at time n is stochastically smaller than the
right-most particle among 2n i.i.d. random walkers with the same displacement
distribution.[Hint: Use induction as follows: Consider the right-most position of
the branching random walk at n+1 generation, and use the induction hypothesis
followed by the result (a).]

27In Gantert and Hofelsauer (2019) it is shown using the stochastic order in Exercise 14 that the
two large deviation rates coincide for x > R + μ, and more, where μ is the mean displacement.



Chapter 22
Special Topic: Bienaymé–Galton–Watson
Simple Branching Process and
Excursions

The tree contours and heights are identified as two natural discrete parameter
stochastic processes associated with the branching process introduced in
Chapter 14 as a probability distribution on a metric space of family trees.
Analysis of contour paths in the special case of critical (shifted) geometric
offspring distributions leads naturally to consideration of continuous parame-
ter processes in terms of Brownian motion excursions.

For the development given here we continue to use the more detailed description
of branching processes as probability distributions on the space of trees introduced
in Chapter 14. It is sufficient to consider the case X0 = 1 of a single progenitor
〈1〉. Denote the family tree by τ = τ(〈1〉). Suppose that τ is a finite tree rooted
at 〈1〉. The vertices 〈1v〉 ∈ τ are referred to as the progeny of 〈1〉, and the total
progeny n of 〈1〉 is denoted ‖τ‖ = n. In particular ‖τ‖ = n implies a total of n + 1
vertices in τ since the root 〈1〉 is excluded in this definition of total progeny. Loosely
speaking, by traversing the contour of τ one obtains a polygonal path (0, s0 = 1),
(1, s1), . . . , (2n + 1, s2n+1 = 0) starting at s0 = 1 and reaching 0 for the first time
in 2n + 1 time steps; see Figure 22.1. Recall that each offspring vertex of the tree
may be uniquely associated with its parental edge, where we complete this picture
by assigning a “ghost” edge to 〈1〉. The definition of the associated contour path can
be made more precise by an inductive definition as follows; also see Figure 22.1.

Definition 22.1. Let τ be a finite tree rooted at 〈1〉 with total progeny (excludes the
root) ‖τ‖ = n, n ≥ 0. If τ = {〈1〉, 〈11〉, . . . , 〈11...1〉}, then we say that τ is pure
trunk and define its associated contour path s = {( j, s j ) : j = 0, 1, . . . , 2n + 1} by

© Springer Nature Switzerland AG 2021
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< 1 >

n||τ || = = 0 1 = 2 · 0 + 1
0

1

< 11 >
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1

< 1 >
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= 2 · 4 + 1

Fig. 22.1 Tree Contour
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s j :=
{

j + 1 if j = 0, . . . , n

2n + 1− j, if j = n + 1, . . . , 2n + 1.
(22.1)

If τ = τ(〈1〉) is not a pure trunk, then there is a unique k0 such that the k0-tuple
v(0) = 〈1, . . . , 1〉 ∈ τ , 〈v(0)1〉, 〈v(0)2〉 ∈ τ , and if u = 〈u1, . . . , u j 〉 ∈ τ with j ≤
k0, then u is the j-tuple vertex 〈1, . . . , 1〉. By induction on the total progeny there
are unique contour paths s(0), s(1), s(2) associated with the pure trunk τ (0) rooted at
〈1〉, and the subtrees τ (i), i = 1, 2, rooted at v(0) such that 〈v(0)i〉 ∈ τ (i), i = 1, 2.
Define the contour path s = {( j, s j ) : j = 0, 1, . . . , 2n + 1} associated with τ by

s j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s(0)j for j ≤ k0 − 1

k0 − 1+ s(1)j−k0
for j = k0, . . . , k0 + j (1)

k0 − 1+ s(2)
j−k0− j (1)

for j = k0 + j (1), . . . , k0 + j (1) + j (2)

s(0)
j−k0− j (1)− j (2)

for j = k0 + j (1) + j (2), . . . , 2n + 1,

(22.2)

where j (i) = 2‖τ (i)‖, i = 1, 2.

Proposition 22.1. For each n ≥ 0 the set Ωn consisting of all trees τ with single
progenitor and total progeny ‖τ‖ = n is in one-to-one correspondence with the
set Pn of all polygonal paths s = {(0, s0), (1, s1), . . . , (2n + 1, s2n+1)} such that
s0 = 1, s2n+1 = 0, s j > 0, |s j+1 − s j | = 1, 1 ≤ j ≤ 2n.

Proof. It is sufficient to show that the contour path map defined in Definition 22.1
is invertible. Again one may proceed inductively, noting that the result is obvious
for n = 0 and n = 1. Let n ≥ 2 and suppose one is given such a polygonal
path s = {( j, s j ) : j = 0, 1, . . . , 2n + 1}, n ≥ 0, such that s0 = 1, s2n+1 = 0.
If s has a unique local maximum at k0 ∈ {0, . . . , 2n}, which is necessarily the
global maximum, then the associated tree τ is a pure trunk with ‖τ‖ = k0 progeny.
Otherwise s must have at least two local maxima. Letting m1 denote the location of
the first such local maxima and m2 that of the last local maxima in {0, 1, . . . , 2n+1},
the function s achieves at least one global minimum value between these points.
Define

k0 := min{s j : m1 ≤ j ≤ m2} − 1. (22.3)

Then k0 ≥ 0 provides the total progeny in the pure trunk subtree τ (0) rooted at 〈1〉.
By induction, the polygonal path {( j − k0, s j − k0) : j = k0, . . . 2n − k0} defines a
tree τ ′ which may be rooted at the k0−tuple vertex 〈11 . . . 1〉 to obtain the associated
tree having contour path s. �

The probabilities of the contour paths associated with a Bienaymé–Galton–
Watson distribution of random trees depend on the (conditional) probabilities with
which trees τ occur having n total progeny. As will be shown in the next proposition,
there is a unique class of offspring distributions, namely the shifted geometric
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distribution, for which these conditional probabilities are the same (uniform) over
τ ∈ Ωn , or equivalently s ∈ Pn .

Proposition 22.2. Consider the Bienaymé–Galton–Watson probability P concen-
trated on the space Ω of trees with a single progenitor and defined by a positive
offspring distribution f (k) > 0, k = 0, 1, 2, . . . . Let Ωn := {τ ∈ Ω : ‖τ‖ =
n}, n = 0, 1, 2 . . . . Then (i) P(Ωn) > 0 for each n ≥ 0, and (ii)P({τ }|Ωn) is
constant (uniform) for τ ∈ Ωn for each n ≥ 0, if and only if f (k) = θk ·(1−θ), k =
0, 1, 2, . . . , for some 0 < θ < 1. In this case,

P({τ }|Ωn) = 2n + 1
(2n+1

n

) , τ ∈ Ωn .

Proof. Since f (k) > 0 for all k, each τ ∈ Ωn has positive probability, n =
1, 2, . . . . The total number of trees in Ωn is 1

2n+1

(2n+1
n

)
as may be counted for

the corresponding contour paths using the reflection principle (Chapter 3). Suppose
f (k) = θk · (1− θ), k ≥ 0, is the (shifted) geometric offspring distribution and let
τ be an arbitrary tree rooted at 〈1〉 with total progeny n. Note that the probability of
a singleton {τ }, τ ∈ Ωn may be computed from (14.5) by passing to a limit since
{τ } = ∩∞n=1 B 1

n
(τ ), and for τ ∈ Ωn one has τ |n = τ fall all n sufficiently large.

Thus trees τ with total progeny n have, up to normalizing constant depending only
on n, probability

∏

v∈τ
f (#v) = (1− θ)n+1θ

∑
v∈τ #(v) = (1− θ)n+1θn,

where #(v) denotes the number of offspring of v. Thus the probability is the same for
all trees with n progeny and, therefore, the conditional probability is the reciprocal
of the number of such trees. For the converse proceed by induction. First note that
in either case n = 0 or n = 1 there is only one path with probability one. For n ≥ 2
define two trees with total progeny n by τ (1) = {〈1〉, 〈1 j〉 : j = 1, . . . , n} and
τ (2) = {〈1〉, 〈1 j〉 : j = 1, 2, . . . , n − 1, 〈111〉}. By the induction hypothesis these
trees are equally likely among trees with given total progeny n. The (conditional)
probability of τ (1), given n total progeny, is C−1 f (n) f n(0) and that of τ (2) is
C−1 f (n− 1) f n−1(0) f (1), where C−1 is a positive normalizing constant. Equating
these conditional probabilities one has that f (n)

f (n−1) = f (1)
f (0) . Now simply iterate this

relation to complete the proof. �
Corollary 22.3. For the Bienaymé–Galton–Watson distribution defined by a
(shifted) geometric offspring distribution and single progenitor, the conditional
distribution of the family tree τ given that ‖τ‖ = n coincides with the conditional
distribution of a simple symmetric random walk starting at 1 and conditioned to
reach 0 for the first time in 2n + 1 steps.

Remark 22.1. One may check that the conditional distribution of the simple
random walk Sn := 1 + Y1 + · · · + Yn, n ≥ 1, S0 = 1, given [S0 = 1, S2n+1 = 0]
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does not depend on the probability p ∈ (0, 1) defining P(Yk = +1) = p =
1 − P(Yk = −1). Thus the statement of the corollary extends accordingly to
conditioned asymmetric simple random walks.

Let us now consider the simple symmetric random walk S0, S1, S2, . . . started at
S0 = 1 and defined by i.i.d. equally likely Bernoulli ±1 displacements Y1,Y2, . . . ,
i.e., P(Yk = 1) = P(Yk = −1) = 1/2, k ≥ 1, and Sn = 1 + Y1 + Y2 +
· · · Yn, n ≥ 1. The associated simple random walk reflected at 0 may be defined
by Rn = |Sn|, n = 0, 1, 2 . . . . A graph of the sample paths reveals a sequence of
contour path excursions which, in view of the following corollary and the strong
Markov property, define a sequence of contours of i.i.d. Bienaymé–Galton–Watson
distributed random trees.

Corollary 22.4. Let N = ||τ || denote the total progeny of a Bienaymé–Galton–
Watson random tree τ , having the (shifted) geometric offspring distribution with
θ = 1/2. Then 2N + 1 is distributed as T0 = inf{n : Rn ≡ |Sn| = 0}.
Proof. Observe that by conditioning on X1 and using Proposition 14.3, the proba-
bility generating function g(s) = Es N of N =∑∞

n=1 Xn satisfies

g(s) = E{(sg(s))X1} = 1

2

1

1− 1
2 sg(s)

= 1

2− sg(s)
, 0 ≤ s ≤ 1.

Thus, for 0 < s < 1, the quadratic equation sg2(s) − 2g(s) + 1 = 0 yields the
solution

g(s) = 1−√1− s

s
=

∞∑

n=0

(
1/2

n + 1

)

(−1)nsn, (22.4)

and therefore P(N = n) = (−1)n
( 1/2

n+1

) = 1
n+1

(2n
n

)
2−(2n+1), for n = 0, 1, 2 . . . ,

which agrees with the distribution of the hitting time at 0. �

Remark 22.2 (Otter-Dwass Formulae). Corollary 22.4 may be viewed as a special
case of the so-called Otter-Dwass formula for the distribution of total progeny
in a critical branching process. That is, consider a discrete parameter Bienaymé–
Galton–Watson branching process having single initial progenitor Y0 = 1 and
subcritical/critical offspring distribution p j , j ≥ 0. For this shift the contour paths
to start at S0 = 0 and end at S2n+1 = −1. The resulting contour walk will
still be denoted by {Sn : n ≥ 0}. According to the Otter-Dwass formulae in
this representation, the total progeny N = ∑∞

j=0 Y j of the subcritical or critical
branching process coincides with the hitting time of −1 by {Sn : n ≥ 0}, S0 = 0,
having increment distribution p j+1, j ≥ −1. The contour process clearly has skip-
free sample paths to the left. Thus combining random walk properties, e.g., as in the
case Corollary 22.3, with Kemperman’s formula from Chapter 3, one obtains the
following
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P(N = n) = P(T−1 = n) = 1

n
P(Sn = −1). (22.5)

This formula relating the total progeny distribution with the position of the left skip-
free contour walk is often referred to as Otter’s formula in the case of a single
progenitor Y0 = 1. The extension to Y0 = k ≥ 2 is also possible for the critical
shifted geometric distribution (Exercise 22), making it a special case of Dwass’
formula. In this case the tree labeling produces a forest of k genealogical labelings.
What we have proven is only valid for the critical offspring distribution because
one must show that the contour process is generally distributed as a random walk to
apply Kemperman’s formula. Proofs in the generality of subcritical/critical offspring
distributions are both notationally cumbersome and index[authors]LeGall tricky.1

The following theorem provides a basic connection between “excursions” of
reflected Brownian motion (defined below) and scaling of Bienaymé–Galton–
Watson trees having the (shifted) geometric offspring distribution.

Remark 22.3. An extension2 of this limit theorem to arbitrary critical offspring
distributions with finite second moment is possible. This non-trivial theorem
involves the construction of a secondary path process, referred to as the Lukasiewicz
path, with i.i.d. increments having finite second moment and distributed as the
random walk with increment distribution pk+1, k ≥ −1, up to the hitting time of
−1, and such that the indicated weak convergence to reflected Brownian motions
implies the same for the contour process.

Theorem 22.5. Let τ1, τ2, . . . be an i.i.d. sequence of Bienaymé–Galton–Watson
random trees having the critical shifted geometric offspring distribution f (k) =
2−k−1, k = 0, 1, 2, . . . , each with a single progenitor. Denote the contour path of
τ j by {(k, s( j)

k ) : k = 0, 1, . . . 2N j + 1} where N j = ||τ j ||. Define a continuation of
successive contour paths (n, sn), n = 0, 1, 2, . . . by s0 = 1 and

sn = s( j)
n−T ( j−1)−1

, T ( j−1) + 1 ≤ n ≤ T ( j), n, j ≥ 1,

where T (0) = 0, T ( j) := T ( j−1) + 2N j + 2, j ≥ 1. Next define a polygonal

path continuous extension by linear interpolation {C (n)
t , t ≥ 0} of the nodes

{(k/n, sk/
√

n) : k = 0, 1, . . . }. Then C (n)
t converges weakly to the reflected

Brownian motion {|B(t)| : t ≥ 0} where {B(t) : t ≥ 0} is standard Brownian
motion starting at 0.

Proof. This follows immediately from the functional central limit theorem since
x → |x | is a continuous function and, in view of Corollary 22.3 and Proposi-

1See Le Gall (2005) and Pitman (1997) for two different approaches.
2See Le Gall (2005), Aldous (1993).
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tion 22.4, {Sk : k ≥ 0} has the same distribution as {|Sn| : n ≥ 0}, where
{Sn : n ≥ 0} is a simple symmetric random walk started at 1. �

This result naturally motivates3 an analysis of (positive) excursions of reflected
Brownian motion from a perspective of branching processes. Recalling Proposi-
tion 7.25, T := inf{t > 0 : |B(t)| = 0} ≡ 0 with probability one since B(0) = 0. In
view of this a more suitable definition of Brownian excursions may be formulated
as follows.

Definition 22.2 (Brownian Excursion). Let B = {B(t) : t ≥ 0} be standard
Brownian motion starting at B(0) = 0 and defined on a probability space
(Ω,F , P). For ω ∈ Ω such that B(1, ω) �= 0 define the positive excursion path
of reflected Brownian motion t → |B(t, ω)| about t = 1 by

B+∗(t, ω) := |B(t R(ω)+ (1− t)L(ω), ω)|√
R(ω)− L(ω)

0 ≤ t ≤ 1, (22.6)

where L := sup{s ≤ 1 : |B(s)| = 0} and R := inf{s ≥ 1 : |B(s)| = 0}. Define the
excursion path B+∗(t, ω) := 0 for each 0 ≤ t ≤ 1 in the case B(1, ω) = 0.

That is, the “excursion”is over the maximal zero-free interval about t = 1. The
interval (L , R) is referred to as the excursion interval about t = 1. Recall from
Chapter 18, Theorem 18.3, and Chapter 19, Exercise 6, that L has the arc-sine
distribution

P(L ≤ t) = 2

π
sin−1(

√
t).

A related process is the so-called Brownian meander, referring to the portion of the
excursion ending at t = 1; see Exercise 22.

In preparation for the proof of the following proposition, define simple function
approximations by

Ln =
∑

j≤2n

j − 1

2n
1[( j−1)2−n≤L< j2−n ],

Rn =
∑

k≥2n

k

2n
1[k2−n≤R<(k+1)2−n],

B+∗n (t) = |B(t Rn + (1− t)Ln)|√
Rn − Ln

, 0 ≤ t ≤ 1.

3Ideas related to the existence of continuum trees are developed in Aldous (1991) with correspond-
ing functional limit theorems and invariance principles.
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Proposition 22.6. {B+∗(t) : 0 ≤ t ≤ 1} is a Markov process with continuous
sample paths and (non-homogeneous) transition probabilities4 p∗(s, t; y, dz) given
by

p+∗(0, t; 0, dz) = 2z2
√

2π t3(1− t)3
e−

z2
2t (1−t) dz, 0 < t < 1, z > 0,

and for 0 < s < t < 1, y, z > 0

p+∗(s, t; y, dz) = { e−
(z−y)2

2(t−s)√
2π(t − s)

− e−
(z+y)2

2(t−s)√
2π(t − s)

}(1− s

1− t
)

3
2

ze−
z2

2(1−t)

ye−
y2

2(1−s)

dz.

Moreover, the excursion process is independent of the Brownian paths up to time L
and the length of the excursion interval (L , R). The excursion is also independent
of the Brownian path after time R.

Proof. In addition to the computation of transition probabilities we will show that
the excursion is independent of the Brownian paths up to time L and the length of
time between L and R. The independence of the excursion with the process after
time R follows from the strong Markov property since R = 1 + τ0(B+(1)) and
τ0(B+(1)) := inf{t ≥ 0 : B(1 + t) = 0} is a stopping time. In particular R is a
stopping time (Exercise 22). Fix 0 < s1 < · · · < sl , 0 < t1 < t2 < · · · < tm < 1,
m ≥ 1. Let g1 be a bounded continuous function on R

m , g2 a bounded continuous
function on [0, 1]×[1,∞) such that, for some ε > 0, g2(s, t) = 0 for t− s < ε and
for t − s > 1/ε, and let g3 be a bounded continuous function on [0,∞)m . Consider
the quantity

M0 := E0{g1(B(s1 ∧ L), . . . , B(sl ∧ L))g2(L , R)g3(B
+∗(t1), . . . , B+∗(tm))}.

Then, in terms of the simple function approximations one has

g1(B(s1 ∧ Ln), . . . , B(sl ∧ Ln))g2(Ln , Rn)g3(B
+∗
n (t1), . . . , B+∗n (tm ))

=
∑

j≤2n ,k≥2n

g1(B(s1 ∧ ( j − 1)2−n), . . . , B(sl ∧ ( j − 1)2−n))g2( j2−n , k2−n)

×g3(
|B(t1Δ+ j2−n)|√

Δ
, . . . ,

|B(tmΔ+ j2−n)|√
Δ

)1[( j−1)2−n≤L< j2−n ,k2−n≤R<(k+1)2−n ],

where Δ ≡ Δ( j, k, n) := (k − j)2−n . Thus,

4The derivation follows the masterful calculations of Itô and McKean (1974), with the trivial
caveat that we consider excursions of the reflected Brownian motion while they consider signed
excursions of Brownian motion. Obviously the sign does not change over the excursion interval in
any case.
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M0 = lim
n

∑

j≤2n ,k≥2n

E0{g1(B(s1 ∧ ( j − 1)2−n), . . . , B(sl ∧ ( j − 1)2−n))

×g2( j2−n, k2−n)g3(
|B(t1Δ+ j2−n)|√

Δ
, . . . ,

|B(tmΔ+ j2−n)|√
Δ

)

×1[( j−1)2−n≤L< j2−n ,k2−n≤R<(k+1)2−n]}. (22.7)

Note that j2−n < t1Δ+ j2−n < tmΔ+ j2−n ≤ k2−n and sl ∧ ( j − 1)2−n ≤ j2−n .
The next step is to condition the term-wise expectations on the respective σ−fields
Fn, j := σ(1[( j−1)2−n≤L< j2−n ], B(s), s ≤ j2−n). Notice that the σ -field gives the

(unsigned) positions of the Brownian motion B( j
2n ) and the event that ( j−1)2−n ≤

L < j2−n . From here

M0 = lim
n

∑

j≤2n ,k≥2n

E0{g1(B(s1 ∧ ( j − 1)2−n), . . . , B(sl ∧ ( j − 1)2−n))g2( j2−n , k2−n)

×1[( j−1)2−n≤L< j2−n ]

×E0[1[k2−n≤R<(k+1)2−n ]g3(
|B(t1Δ+ j2−n)|√

Δ
, . . . ,

|B(tmΔ+ j2−n)|√
Δ

)|Fn, j ]}.

To compute the indicated conditional expectation recall the transition density

p(0)(t; x, y) = 1√
2π t
{e− (x−y)2

2t − e−
(x+y)2

2t } of Brownian motion on (0,∞) viewed
up to the time to reach 0. Be mindful for the calculation to follow that according to
these transition probabilities the process may either be positive or negative prior to
reaching 0. Then, noting that k2−n − (tmΔ+ j2−n) = (1− tm)Δ, one has

E0{1[k2−n≤R<(k+1)2−n ]g3(
|B(t1Δ+ j2−n)|√

Δ
, . . . ,

|B(tmΔ+ j2−n)|√
Δ

)|Fn, j }

=
∫

[0,∞)m

∫

[0,∞)
g3(

y1√
Δ
, . . . ,

ym√
Δ
)

1

2
p(0)(t1Δ; B(

j

2n ), y1)

×p(0)((t2 − t1)Δ; y1, y2) · · · p(0)((tm − tm−1)Δ; ym−1, ym )p(0)((1− tm )Δ; ym , z)

Pz(τ0 < 2−n)dzdym · · · dy1. (22.8)

The factor of 1
2 occurs as the probability of a positive excursion from 0. Next make

the change of variable yi =
√
Δzi , 1 ≤ i ≤ m, to write

p(0)(tΔ;√Δx,
√
Δy) = p(0)(t; x, y)(

√
Δ)−1

and observe by comparing definitions that

p(0)(t − s; y, z) = p+∗(s, t; y, z)(
1− t

1− s
)

3
2

ye−
y2

2(1−s)

ze−
z2

2(1−t)

.
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In particular, this brings the asserted transition probabilities explicitly into the
calculation by substituting these for the respective factors of the product p(0)((t2 −
t1)Δ; y1, y2) · · · p(0)((tm − tm−1)Δ; ym−1, ym). Remarkably, the telescoping can-
cellations in the resulting product render it as

m∏

j=2

p+∗(t j−1, t j ; z j−1, z j )(
1− t j

1− t j−1
)

3
2

z j−1e
− z2

j−1
2(1−t j−1)

z j e
− z2

j
2(1−t j )

. (22.9)

To express the expectation in terms of the transition probabilities p+∗(s, t; x, y) it
is convenient to define (for y = B( j

2n ))

r(Δ, y, z1, zm , z)

= p(0)(t1Δ; y,
√
Δz1)p(0)((1− tm )Δ;

√
Δzm , z)

2p+∗(0, t1; 0, z1)p(0)(Δ; y, z)
(

1− tm
1− t1

)
3
2

z1e
− z2

1
2(1−t1)

zme
− z2

m
2(1−tm )

√
Δ.

The denominator of r permits the introduction of the two natural factors
p+∗(0, t1; 0, z1)p(0)(Δ; B j

2n
, z) as follows:

E0[g3(
|B(t1Δ+ j2−n)|√

Δ
, . . . ,

|B(tmΔ+ j2−n)|√
Δ

)|Fn, j ]

=
∫

[0,∞)m

∫

[0,∞)
g3(z1, . . . , zm )

1

2
p(0)(t1Δ; B(

j

2n ),
√
Δz1)

×p+∗(t1, t2; z1, z2) · · · p+∗(tm−1, tm ; zm−1, zm )p(0)((1− tm )Δ;
√
Δzm , z)

×(1− tm
1− t1

)
3
2

z1e
− z2

1
2(1−t1)

zme
− z2

m
2(1−tm )

Pz(τ0 < 2−n)dzdym · · · dy1

=
∫

[0,∞)m

∫

[0,∞)
g3(z1, . . . , zm )p(0)(Δ; B(

j

2n ), z)p+∗(0, t1; 0, z1)p+∗(t1, t2; z1, z2) · · ·

·p+∗(tm−1, tm ; zm−1, zm )Pz(τ0 < 2−n)r(Δ, B
j

2n , z1, zm , z)dzdym · · · dy1. (22.10)

Now, with a little algebraic manipulation (expanding the quadratic terms in the
exponentials defining p(0)) one can write the factors appearing in the expression for
r in terms of sinh(x) = ex−e−x

2 as

p(0)(Δ; y, z) = 2√
2πΔ

e−
y2+z2

2Δ sinh(
yz

Δ
),

p(0)(t1Δ; y,
√
Δz1) = 2e

− 1
2Δt1

(Δz2
1+y2)

√
2πΔt1

sinh(
yz1√
Δt1

),
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p(0)((1− tm )Δ;
√
Δzm , z) = 2e

− 1
2Δ(1−tm )

(z2+Δz2
m )

√
2πΔ(1− tm )

sinh(
zzm√

Δ(1− tm )
), (22.11)

and

p+∗(0, t1; 0, z1) =
2z2

1√
2π t3

1 (1− t1)3
e
− z2

1
2t1(1−t1) .

Performing the indicated multiplications, next observe that the factor r =
r(Δ, y, z1, zm, z) may be expressed as

r =

√
Δt1

yz1
sinh( yz1√

Δt1
)

√
Δ(1−tm )

zzm
sinh( zzm√

Δ(1−tm )
)

2 Δ
yz sinh( yz

Δ )
exp{− y2(1− t1)

2Δt1
− z2tm

2Δ(1− tm )
}.

In particular the support of g2 makes r bounded within the domain of integration
and, using l’Hôpital’s rule limh→0

sinh(ch)
ch = 1, so that r → 1/2 as y, z → 0.

Substituting the expression for the unconditional expectation into M0 and passing to
the limit as n →∞ one obtains (noting B(L) = 0 and Pz(τ0 < 2−n)dz ⇒ δ0(dz),
as n →∞),

M0 = lim
n

∑

j≤2n ,k≥2n

E0{g1(B(s1 ∧ ( j − 1)2−n), . . . , B(sl ∧ ( j − 1)2−n))

×1[( j−1)2−n≤L< j2−n ,k2−n≤R<(k+1)2−n ]}

×
∫

[0,∞)
g2( j2−n, k2−n)p(0)(Δ; B(

j

2n ), z)Pz(τ0 < 2−n)r(Δ, B(
j

2n ), z1, zm , z)dz}

×
∫

[0,∞)m
g3(z1, . . . , zm)p+∗(0, t1; 0, z1)p+∗(t1, t2; z1, z2)

· · · p+∗(tm−1, tm; zm−1, zm)dzm · · · dz1

= E0{g1(B(s1 ∧ L), . . . , B(sm ∧ L))g2(L , R)}

×
∫

[0,∞)m
g3(z1, . . . , zm)p+∗(0, t1; 0, z1)p+∗(t1, t2; z1, z2)

· · · p+∗(tm−1, tm; zm−1, zm)dzm · · · dz1.

Since, letting ε ↓ 0 in the support of g2, the functions g1, g2, g3 are arbitrary
bounded continuous functions this completes the proof. In particular taking g1, g2
identically one proves the Markov property and identifies the transition probability
densities for the excursion. �
Remark 22.4. A somewhat unsatisfying aspect of the above proof is that it relies
on a-priori formula for p+∗ that is then verified. On the other hand, it is a testimony
to the power of computation by brute force simple function approximations and
conditional expectation.
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The literature on the distributions of various functionals of the Brownian
excursion is quite extensive and results are obtainable by diverse methods,5

including the distribution of the length of the excursion interval, and the distribution
of the maximum of the Brownian excursion. Also the material in this chapter
only scratches the surface of the deep index[authors]LeGall connections6 between
random trees and excursions. Some additional insights may be obtained from the
computations outlined in the exercises.

Exercises

1. (Dwass’ Formula) Let k ≥ 2 and extend the formula (22.5) for the total progeny
distribution in the case of a critical shifted geometric offspring distribution
and the number of initial number of progenitors is Y0 = k. [Hint: Refine
the genealogical labeling to encode the dependence on each progenitor before
applying the Kemperman formula.]

2. (Borel–Tanner Distribution) Let N be the total progeny in a branching process
with a single progenitor and Poisson distribution with mean λ ≤ 1. Show that

P(N = n) = (λn)n−1

n! e−λn, n ≥ 1. [Hint: Use the Otter-Dwass’ formula.]
3. Show that R in Definition 22.2 is a stopping time and the Brownian motion after

time R is independent of the excursion process.
4. (Brownian Meander) The simple random walk starting at 0 and conditioned to

remain positive until a first return at 0 at time 2n will be referred to as simple
random walk excursion over 0 to 2n and denoted {S+∗k : k = 0, 1, 2, . . . , 2n}.
The simple random walk starting at 0 and conditioned to remain positive over
time 2n − 1 is a process denoted {S+k : k = 0, 1, . . . , 2n} and referred to as
simple random walk meander over 0 to 2n. This exercise concerns limiting finite-
dimensional distributions of the polygonal processes {X̃ (n)+

t : 0 ≤ t ≤ 1} and
{X̃ (n)+∗

t : 0 ≤ t ≤ 1} obtained by (continuous) linear interpolations of the points

( k
2n ,

S+k√
2n
), k = 0, 1, . . . , 2n, and ( k

2n ,
S+∗k√

2n
), k = 0, 1, . . . , 2n, conditionally given

[X1 > 0, T0 > 2n] and [X1 > 0, T0 = 2n], respectively, cf. (17.4). The goal is
to compute the following limits.

5Much of this originated with Lévy (1945, 1965). Itô and McKean (1963) exploits this in their
construction of one-dimensional diffusions as Markov processes on [0,∞) subject to a general
analytic classification of possible boundary conditions due to Feller. Also see Chung (1976) and
numerous references therein, for historic remarks and alternative approaches to excursions.
6While this chapter is limited to defining the processes and developing a few of their basic
properties, elaborate theoretical developments with applications can be found in Aldous (1993);
Neveu and Pitman (1989); Pitman (2002); Janson (2007); Le Gall (2005); Lyons and Peres (2016);
Kovchegov and Zaliapin (2020).
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(a)

lim
n→∞ P(X̃ (n)+

t1
≤ x1, . . . , X̃ (n)+

tk
≤ xk )

=
∫ x1

0
· · ·

∫ xk

0
p+(0, 0; t1, y1) . . . p+(tk−1, yk−1; tk , yk )dyk . . . dy1,

where, letting ϕ(z) = 1√
2π

e− 1
2 z2

, and Φ(z) = ∫ z
−∞ ϕ(u)du, for x, y > 0, 0 <

s < t ≤ 1,

(b)

p+(s, x; t, y) = 1√
2π(t − s)

{e−
(y−x)2
2(t−s) − e

− (x+y)2
2(t−s) }{

Φ(
y√
1−t

)−Φ(− y√
1−t

)

Φ( x√
1−s

)−Φ(− x√
1−s

)
}

p+(0, 0; t, y) = t
− 3

2 ye
− y2

2t {Φ
(

y√
1− t

)−Φ(− y√
1− t

)

}, y > 0, 0 < t ≤ 1

P(X̃ (n)+∗
t1

≤ x1, . . . , X̃ (n)+∗
tk

≤ xk )

=
∫ x1

0
· · ·

∫ xk

0
p+∗(0, 0; t1, y1)p+∗(t1, y1; t2, y2) . . . p+∗(tk−1, yk−1; tk , yk )dyk . . . dy1,

where for 0 < s < t < 1, y, x > 0,

p+∗(s, x; t, y) = (1− s)3/2

(1− t)3/2
y

x

ϕ(
y√
1−t

)

ϕ( x√
1−s

)
(t − s)−

1
2 {ϕ( y − x√

t − s
)− ϕ(

y + x√
t − s

)},

p+∗(0, 0; t, y) = 2(2π t3(1− t)3)−
1
2 y2 exp[−y2/2t (1− t)]

are the transition probabilities for the positive excursion process of reflected
Brownian motion. The calculations of the finite-dimensional limit distributions
will use the m-dimensional version (m ≥ 1) of the local limit theorem
(Proposition 16.1) of Chapter 16, the reflection principle for simple symmetric
random walk (Proposition 3.1) of Chapter 3, and Stirling’s formula Chapter 3,
as well. In particular since, as in (17.4)–(17.6), on the respective sets [X1 >

0, T0 > 2n] and [X1 > 0, T0 = 2n] the processes differ from the process
{ S[2nt]√

2n
: 0 ≤ t ≤ 1} at time points t1 < · · · < tm by no more than 1√

2n
= o(1), it

is sufficient to consider { S[2nt]√
2n
: 0 ≤ t ≤ 1} conditionally. Let Y1, Y2, . . . be i.i.d.

±1-valued (Bernoulli) random variables with P(Yi = +1) = P(Yi = −1) = 1
2 .

Let S0 = 0, Sn = Y1 + · · · + Yn , n ≥ 1. Let T0 = inf{n ≥ 1 : Sn = 0}.
(i) Show, for n even, P(T0 > 2n) = P(S2n−1 = −1) = P(S2n = 0) ∼√

2
π
(2n)− 1

2 [Hint: Use the reflection principle, symmetry and (2.2).]

(ii) P(T0 = 2n) = 1
2n−1 P(S2n = 0) ∼

√
2
π
(2n)− 3

2 [Hint: The assertion (ii)
follows similarly or by direct application of (i).] in the sense that the ratios
converge to 1 as n →∞.
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(iii) Let a > 0 b ≥ 0 and let k denote an arbitrary positive integer with |b−a| ≤
k and such that b − a and k have the same parity. Show P(Sk = b|S0 =
a) = ( k

k+b−a
2

) ( 1
2

)k
.

(iv) Show for a > 0 that

P(Sk=b, Si > 0, i≤k|S0 = a)= P(Sk = b|S0 = a)−P(Sk = b|S0 = −a).

In the case a = 0 show P(Sk = b, Si > 0, i ≤ k) = b
k P(Sk = b). [Hint:

Use the reflection principle in both cases]
(v) Show for a > 0, P(Si > 0, i ≤ k|S0 = a) = P(T−a > k), where Ty

denotes the time to reach y �= 0 by the simple symmetric random walk
starting at 0.

(vi) Show for y > 0, that P( 1
2n Tz

√
2n > 1 − [2nt]

2n ) → 1 − P(τ−y ≤ 1 − t).

[Hint: 1
2n T−y

√
2n converges in distribution to the corresponding hitting time

τ−y for Brownian motion by the functional central limit theorem.]
(vii) Show that the preceding probability may be expressed as 1−2P(B(1− t) >

−y) ≡ 1− 2P(B(1− t) ≤ y). [Hint: Use the reflection principle.]
(viii) Show for y > 0, 0 < t < 1,

√
2n

2
P(

S[2nt]√
2n

= [y√2n]√
2n

|X1 > 0, T0 > 2n)

=
√

2n

2

2

P(T0 > 2n)
P(

S[2nt]√
2n

= [y√2n]√
2n

, Si > 0, 1 ≤ i ≤ [2nt])

×P(Si > 0, [2nt] + 1 ≤ i ≤ 2n|S[2nt] = [y
√

2n])

= 2

P(T0 > 2n)

[y√2n]
[2nt]

√
2n

2
P

(
S[2nt]√

2n
= [y√2n]√

2n

)

P(
1

2n
T−[y√2n] > 1− [2nt]

2n
)

∼ y

t
3
2

e
− y2

2t

{

2Φ

(
y√

1− t

)

− 1

}

= y

t
3
2

e
− y2

2t {Φ( y√
1− t

)−Φ

(

− y√
1− t

)

}.

[Hint: Use the preceding calculations together with the local central limit
theorem and sample path combinatorial symmetries.]

(ix) Show for 0 ≤ s < t,

(

√
2n

2
)2 P(

S[2ns]√
2n

= [x√2n]√
2n

,
S[2nt]√

2n
= [y√2n]√

2n
|X1 > 0, T0 > 2n)

= 2

P(T0 > 2n)

√
2n

2
P(

S[2ns]√
2n

= [x√2n]√
2n

, Si > 0, 1 ≤ i ≤ [2ns])

×
√

2n

2
P(

S[2nt]√
2n

= [y√2n]√
2n

, Si > 0, [2ns] + 1 ≤ i ≤ [2nt]| S[2ns]√
2n

= [x√2n]√
2n

)

×P(Si > 0, i = [2nt] + 1, . . . , 2n|S[2nt] =
[

y
√

2n
]
)
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∼ √2π
√

2n
[x√2n]
[2ns]

1√
2πs

e−
1
2s x2 1√

2π(t − s)
{e− 1

2(t−s) (y−x)2

−e−
1

2(t−s) (y+x)2 }
×{Φ( y√

1− t
)−Φ(− y√

1− t
)} (n →∞)

→
√
π

2

x

s

1√
s

e−
1
2s x2 1√

2π(t − s)
{e− 1

2(t−s) (y−x)2 − e−
1

2(t−s) (y+x)2 }

×{Φ( y√
1− t

)−Φ(− y√
1− t

)}

= p+(0, 0; s, x)p+(s, x; t, y).

(x) Calculate the higher finite-dimensional distributions in (a). [Hint: Condition
as in the previous case k=2 and use induction. ].

(xi) Provide similarly indicated calculations as above for the limit asserted in
(b).



Chapter 23
Special Topic: The Geometric Random
Walk and the Binomial Tree Model of
Mathematical Finance

The pricing of options has a long mathematical history dating back to
Luis Bachelier’s remarkable pre-Einstein and Smoluchowski conceptions
of Brownian motion. Option pricing is widely recognized among the most
natural applications of martingale theory outside of mathematics. In this
chapter, the basic discrete space-time model and underlying concepts are
introduced in terms of a multiplicative (geometric) random walk. The key
mathematical innovations1 that result are (i) the natural occurrence of the
notion of martingale change of measure in terms of arbitrage-freeness and
(ii) the issue of martingale uniqueness as it pertains to market completeness.

Suppose that today’s price (t = 0) of a share of some risky asset, e.g., a share of
stock, is S0. Also suppose that risk-free assets are available, e.g., US Treasury bonds,
at today’s price of B0. The standard model for the (discrete time) evolution of bond
prices is by deterministic growth at the risk-free interest rate r ≥ 0. Accordingly,

Bt+1 − Bt = r Bt , t = 0, 1, . . . (23.1)

Solving (23.1) with the initial value B0, one has

Bt = Rt B0, t = 0, 1, . . . , R := r + 1 ≥ 1. (23.2)

1A more comprehensive and contemporary treatment of these ideas is given by Foelmer and Schied
(2002)
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A standard model for stock prices assumes that in each unit of time, the price may
move up (increase) by a factor u > 1 with probability pu or may move down
by a factor d < 1 with probability pd = 1 − pu . The probabilities (pu, pd) are
referred to as the historical probabilities. Thus the temporal evolution of stock prices
S0, S1, . . . is governed by the stochastic difference equation

St+1 − St = Yt+1St , t = 0, 1, 2, . . . , (23.3)

where Y1,Y2, . . . is an i.i.d. sequence of Bernoulli random variables defined on a
probability space (Ω,F , P) with P(Y1 = u − 1) = pu and P(Y1 = d − 1) = pd .

Equivalently, stock prices are said to be distributed as the geometric random walk
process given by

St =
t∏

j=1

Z j S0, t = 0, 1, . . . , Z j := 1+ Y j , j = 1, 2, . . . (23.4)

Notice that the sequence ln S0, ln S1, ln S2, . . . evolves by additive independent
increments. Thus the stochastic process {ln St : t = 0, 1, 2, . . . } is an additive
random walk. The geometric random walk model for stock prices is commonly
referred to as the binomial tree model2 in mathematical finance. This name is
derived from the recombining tree graph illustrating possible stock movements
S0 → {uS0, d S0} → {uuS0, ud S0 = duS0, dd S0} → · · · . The probability P is
also referred to as the historic or market probability measure, to distinguish it from
other related change of probability measures that arise naturally in this context. It is
reasonable to restrict attention to the case of parameters 0 < d < R < u; otherwise,
for example, if d, u < R, the availability of risk-free assets at rate R would make
the risky asset unattractive to investors.

Definition 23.1. An option or contingent claim on S0, S1, . . . , ST over a finite
time horizon T is identified with a non-negative σ(S0, . . . , ST )-measurable payoff
random variable X = X (S0, S1, . . . , ST ) representing the value of a contract on
evolution of the underlying asset prices.

Example 1. A (European) call option is a contract to allow the holder the right to
purchase the underlying asset at the expiration time T for a previously agreed upon
(contracted) strike price K . The qualifier “European” refers to contracts covering a
time horizon [0, T ] that can only be exercised upon expiration time T . The value
of the contingent claim at time T to the holder of the contract is its payoff X =
(ST − K )+ since the holder will buy ST at the price K upon the event [ST > K ],
but otherwise will not make the purchase, i.e., not exercise the option to buy. The
question is to determine a “fair” purchase value of the contract at today’s time t = 0.

2This model is a discretization of the continuous time model originally used for the derivation of
the Black–Scholes formula in Black and Scholes (1973). The discretization was introduced by Cox
et al. (1976).
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Mathematically this is a final value problem in which one is given the final value of
an evolving process at a specified time and then seeks the initial value.

The problem of pricing options may be viewed from two different perspectives,
namely that of the holder and that of the writer of the contract. Let us first consider
the pricing question from the perspective of the writer. A hedging principle assigns
a price π0, which is sufficient to render the writer’s exposure to lose the amount X
of the contingent claim, a risk-free exposure by appropriate investment of π0 into an
offsetting self-financing portfolio. For example, consider a T = 1 period contract
for which the writer is paid π0. The writer could purchase some ϕ0 units of stock
and ψo units of risk-free bond where

π0 = ϕ0S0 + ψ0 B0, (23.5)

and ϕ0 and ψ0 can at most depend on S0, but not tomorrow’s value of S1; i.e., σ(S0)-
measurable. At the end of one period, this portfolio will have the new value given
by

V1 = ϕ0S1 + ψ0 B1 =
{
ϕ0uS0 + ψ0 RB0 if S1 = uS0

ϕ0d S0 + ψ0 RB0 if S1 = d S0.
(23.6)

On the other hand, at the end of the T = 1 period, the writer is exposed to a loss in
the contingent claim amount

X = X (S0, S1) =
{

X (S0, uS0) if S1 = uS0

X (S0, d S0) if S1 = d S0.
(23.7)

Thus the writer of the contract may seek an amount π0 sufficiently large to solve

V1 ≥ X = X (S0, S1) (23.8)

for the respective portfolio amounts ϕ0 and ψ0 to hedge the risk of loss. Specifically,
solving (23.8) for the least such amount under (23.6) and (23.7), one obtains

ϕ0 = X (S0, uS0)− X (S0, d S0)

uS0 − d S0
ψ0 = d X (S0, uS0)− u X (S0, d S0)

R(d − u)B0
.

(23.9)
Substituting these values into (23.5) and collecting coefficients of V (S0, uS0) and
V (S0, d S0), respectively, it follows that

π0 = R−1[X (S0, uS0)qu + X (S0, d S0)qd ] = R−1
EQ{X (S0, S1)|S0}, (23.10)

where
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qu = R − d

u − d
, qd = u − R

u − d
, (23.11)

and Q is the probability on (Ω,F) under which the stock price model S0, S1, . . . is
distributed as the geometric random walk process

St =
t∏

j=1

Z j S0, t = 0, 1, . . . , j = 1, 2, . . . , (23.12)

with Q(Z1 = u) = qu and Q(Z1 = d) = qd . The requirement d < R < u imposed
at the outset makes Q a probability. The formula (23.10) is the discrete time one-
period Black–Scholes formula for option valuation; see Figure 23.1 as a guide to the
derivation. Observe that it represents the price of the option as a discounted expected
value under a pricing probability Q, which is generally different from the historic
probability P . An agent is willing to accept π0 for the contract because the risk can
be completely removed by investment in a hedging portfolio with value V0 = π0
today and value V1 = X tomorrow at date of expiry (T = 1). Such an agent will
sell a large number N of contracts for π0 + ε to make a profit of Nε.

The extension of the replicating hedging principle to a T-period contract is as
follows: The writer seeks an amount π0 sufficient to construct an offsetting portfolio
defined by random variables ϕt , ψt , t = 0, 1, 2, . . . , T − 1 such that (a) ϕt and ψt

are each Ft−1 := σ(S0, S1, . . . , St−1)-measurable; (b)π0 = V0 := φ0S0+ψ0 B0 →
V1 := ϕ0S1 + ψ0 B1 = ϕ1S1 + ψ1 B1 → · · · → VT := ϕT−1ST + ψT−1 BT such
that VT ≥ X .

The arrows represent the transformation of the portfolio values due to movements
in the underlying risky asset and bond prices, which are reapportioned in the
amounts ϕt and ψt at each successive step t .

Definition 23.2. Random variables ϕt and ψt satisfying (a) are said to be pre-
dictable, and a self-financing strategy refers to a predictable strategy satisfying the
condition (b).

Pricing over period T requires a sufficient amount π0 that the portfolio can be
reapportioned by a predictable strategy, i.e., without the aid of a “crystal ball,”
into shares of stocks and bonds in the course of their evolution such that the self-
financing and attainability conditions hold, i.e.,

ϕt St +ψt Bt = ϕt−1St +ψt−1 Bt ≥ 0, t = 1, 2, . . . , T − 1, ϕT−1ST +ψT−1 BT = VT . (23.13)

The following proposition provides such a price π0 and self-financing strategy for
a given contract amount X .

Proposition 23.1. There is a self-financing hedging strategy (ϕt , ψt ), t =
0, 1, . . . , T − 1 for any given contingency claim X provided π0 ≥ R−T

EQ{X |S0}.
Moreover, Vt := ϕt−1St + ψt−1 Bt ≥ 0, t = 1, 2, . . . , T .
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Fig. 23.1 Recombining Binomial Tree

Proof. The case T = 1 was solved in the derivation of (23.10). From here one
proceeds by induction as follows. Consider the T − 1 period contingent claim

X̃ = R−1
EQ(X |FT−1)

over the one period from T − 1 to T . By the induction hypothesis, there is a self-
financing trading strategy ϕt , ψt , t = 0, 1, . . . , T − 2, such that

ϕT−2ST−1 + ψT−2 BT−1 = X̃

for the price

π̃0 = R−(T−1)
EQ {X̃ |S0} = R−(T−1)

EQ{EQ(R
−1 X |FT−1)|S0} = R−T

EQ{X |S0}. (23.14)

Now reapportion the amount X̃ = ϕT−2ST−1 + ψT−2 BT−1 to complete the hedge
over the last period by solving exactly as in the one-period case. That is, the least
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amount VT required is VT = X , so that one solves (for ϕT−1, ψT−1) the equations

X̃ = ϕT−1ST + ψT−1 BT

=
⎧
⎨

⎩

ϕT−1uST−1 + ψT−1 RBT−1 = X (S0, . . . , ST−1, uST−1) if ST = uST−1

ϕT−1d ST−1 + ψT−1 RBT−1 = X (S0, . . . , ST−1, d ST−1) if ST = d ST−1,

to obtain

ϕT−1 = X (S0, . . . , ST−1, uST−1)− X (S0, . . . , ST−1, d ST−1)

(u − d)ST−1
,

ψT−1 = u X (S0, . . . , ST−1, d ST−1)− d X (S0, . . . , ST−1, uST−1)

R(u − d)BT−1
.

(23.15)

Also check that

ϕT−1ST−1 + ψT−1 BT−1 = R−1
EQ(X |FT−1) = X̃ ,

so that, by (23.14), ϕT−1ST−1+ψT−1 BT−1 = ϕT−2ST−1+ψT−2 BT−1, completing
the induction argument. No additional money is required to complete the hedge from
X̃ to X in the last step so that the asserted non-negativity is also preserved by the
induction argument. �

Some additional terminologies used in this framework are as follows.

Definition 23.3. The contingent claim X with expiry T is said to be attainable at
price π0 if there is a self-financing strategy (ϕt , ψt ) : t = 0, 1, . . . , T − 1, with the
associated market value portfolio process Vt = V (ϕ0, . . . , ϕt ) := ϕt St +ψt Bt , t =
0, 1, . . . , T such that V0 = π0 and VT = X . Self-financing strategies such that
Vt ≥ 0 for each t = 0, 1, . . . , T are said to be admissible.

So we have proven that every contingent claim is attainable for the binomial tree
model with parameters 0 < d < R < u. This is desirable from the perspective of
the individual who sells the contract (writer). Let us now turn to the contract buyer
(holder). In particular, in what sense is the price π0 = R−T

EQ{X |S0} a “fair” price
to pay for the contract?

Definition 23.4. A market model is said to be arbitrage-free if there does not exist a
self-financing trading strategy ϕt , ψt , t = 0, 1, . . . , T − 1 such that ϕt St + ψt Bt =
ϕt−1St + ψt−1 Bt ≥ 0, t = 1, . . . , T , but ϕ0S0 + ψ0 B0 = 0 and EP (ϕT−1ST +
ψT−1 BT ) > 0.

Note that the historic probability P is used in the definition of arbitrage-free
market. The meaning is that there is not a self-financing strategy that can start with
zero investment and attain a positive return with positive probability. This is a sense
in which the writer’s price may be viewed as “fair” to the buyer.
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Proposition 23.2. The binomial tree model for risky asset prices and risk-free
bonds (St , Bt ) : t = 0, 1, . . . , T is arbitrage-free.

Proof. The proof is based on two basic properties of the pricing measure Q obtained
above. First is the existence of a measure Q, which is equivalent to P in the sense
that for any event A ∈ FT = σ(S0, S1, . . . , ST ), one has P(A) = 0 if and
only if Q(A) = 0 (Exercise 1). Secondly, the following property holds under the
probability Q

EQ(R
−(t+1)St+1|Ft ) = R−t St , t = 0, 1, . . . , T − 1. (23.16)

To verify (23.16), simply observe that

EQ(R
−(t+1)St+1|Ft ) = R−(t+1)uSt qu + R−(t+1)d St qd

= R−(t+1)uSt
R − d

u − d
+ R−(t+1)d St

u − R

u − d

= R−t St .

Now, suppose for contradiction, that the model is not arbitrage-free. Then there is a
self-financing trading strategy ϕt , ψt , t = 0, 1, . . . , T − 1 such that ϕt St + ψt Bt =
ϕt−1St + ψt−1 Bt ≥ 0, t = 1, . . . , T , but ϕ0S0 + ψ0 B0 = 0 and EP (ϕT−1ST +
ψT−1 BT ) > 0. Thus, by equivalence, EQ(ϕT−1ST + ψT−1 BT ) > 0. Now, using
the property (23.16), one can iterate backward as follows:

0 < EQ(ϕT−1ST + ψT−1 BT )

= EQ{EQ(ϕT−1ST + ψT−1 BT |FT−1)}
= EQ{ϕT−1EQ(ST |FT−1)+ ψT−1 BT }
= EQ{ϕT−1 RST−1 + ψT−1 RBT−1}
= REQ{ϕT−1ST−1 + ψT−1 BT−1}
= REQ{ϕT−2ST−1 + ψT−2 BT−1}.

Iterating the successive conditioning, one arrives at

0 < EQ(ϕT−1ST + ψT−1 BT ) = RT
EQ{ϕ0S0 + ψ0 B0},

which is a contradiction. �
The property (23.16) is the martingale property of the stochastic process Mt =

R−t St , t = 0, 1, . . . , T on (Ω,F , Q) with respect to the filtration Ft , t ≥ 0, where
F0 = {∅,Ω} and Ft = σ(S0, S1, . . . , St ), 1 ≤ t ≤ T . For this reason, Q is often
referred to as the martingale measure.
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Definition 23.5. An arbitrage-free market model is said to be complete for a time
horizon T if every contingent claim X with expiry T is attainable by an admissible
strategy.

To summarize what has been obtained so far for the binomial tree model, for a
given finite time horizon T , there is a so-called pricing probability Q, equivalent
to the historic probability P on σ(S0, S1, . . . , ST ) in the sense of mutual absolute
continuity, such that

EQ(R
−(t+1)St+1|Ft ) = R−t St , t = 0, 1, . . . , T − 1. (23.17)

That is, the discounted stock prices Mt = R−t St , t = 0, 1 . . . , T , comprise a
martingale under Q, making the model arbitrage-free. Moreover, the market is
complete in the sense that any contingent claim X = X (S0, . . . , ST ) offered at
the arbitrage-free price π0 := R−T

EQ X could be perfectly hedged by the market
price portfolio associated with a suitable self-financing strategy, i.e., is attainable.

In the remainder of this chapter, let us show a little more generally that (i) the
arbitrage-freeness is a consequence of the existence of an equivalent probability,
which makes the discounted risky asset prices a martingale, and (ii) completeness
is equivalent to uniqueness of such an equivalent probability. Let us assume the
same model for bonds Bt = Rt B0, t = 1, . . . , T , but replace the single risky
security of the market price model St = ∏t

j=1 Z j S0, j = 0, 1, . . . , T , by a vector

S = {St : t = 0, . . . , T } := {(S(1)t , . . . , S(K )
t ) : t = 0, 1 . . . , T } consisting

of d statistically independent risky securities S( j)
t := ∏t

i=1 Z ( j)
i S( j)

0 , j =
1, . . . , d, where Z ( j)

1 , Z ( j)
2 , . . . , Z ( j)

T are i.i.d. random variables on a probability
space (Ω,F , P) taking values in {d j , u j }, 0 < d j < u j with probabilities

P(Z ( j)
t = u j ) = p j = 1 − P(Z ( j)

t = d j ). The definition of a contingent
claim X = X (S0, . . . ,ST ), namely a non-negative FT -measurable random variable,
remains the same. The other terminology introduced above also directly extends to
this setting with the single risky security replaced by the vector of risky securities.

Let PT denote the collection of probabilities Q, which are equivalent to P in
the sense of mutual absolute continuity and such that the discounted price vector
{R−tSt : t = 0, 1, . . . , T } is a (vector) martingale under Q with respect to the
filtration Ft = σ(S0, . . . ,St ), t = 1, . . . , T , F0 = σ(S0) = {∅,Ω}. That is, each
component process {S( j)

t : t = 0, 1, . . . , T } is a martingale under Q. We refer to
Q ∈ PT as an equivalent martingale measure (EMM).

Proposition 23.3 (Existence of EMM). The market price model is arbitrage-free
over the period 0 ≤ t ≤ T if and only if PT �= ∅.

Proof. Assume that there is an equivalent martingale measure Q. The proof is
essentially as in the proof given above for the single security binomial tree model
since the martingale property of {R−tSt : t = 0, 1, . . . , T } implies that any
market price portfolio associated with an admissible self-financing strategy ϕt =
(ϕ

(1)
t , . . . , ϕ

(d)
t ), ψt , t = 0, . . . , T − 1, namely
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Vt := ϕt · St + ψt Bt =
d∑

i=1

ϕ
(i)
t S(i)t + ψt Bt , t = 1, . . . , T,

is, upon being discounted as R−t Vt , also a martingale. Specifically, the self-
financing and predictability properties of ϕ,ψ together with the martingale property
imply

EQ(R
−t Vt |Ft−1) =

d∑

i=1

ϕ
(i)
t−1EQ(R

−t S(i)t |Ft−1)+ ψt−1 R−t Bt

=
d∑

i=1

ϕ
(i)
t−1 R−(t−1)S(i)t−1 + ψt−1 Bt−1 = R−(t−1)Vt−1, t = 1, . . . , T .

Now one may see that there can be no arbitrage simply because martingales have
constant expected values.

For the converse, suppose that the market model is arbitrage-free. If 0 < d j <

R < u j for each j = 1, 2, . . . , d, then using the result above, one may explicitly
solve for a martingale measure for each single security model. The corresponding
product measure belongs to PT . If however R is not contained in (d j0 , u j0) for some

j0, then one can construct an arbitragable contingent claim based on the value S( j0)
T

of this single security at expiry as follows. In the case R < d j0 < u j0 , consider

the option to sell the security at its market price RT S( j0)
0 . But observe that since

dT
j0

S( j0)
0 > RT S( j0)

0 , (S( j0)
T −RT S( j0)

0 )+ = S( j0)
T −RT S( j0)

0 regardless of the outcome

of the model. This is arbitragable by borrowing S( j0)
0 /B0 units of risk-free bond,

i.e., an amount S( j0)
0 of currency, and purchasing one unit of S( j0)

0 at the equivalent
amount of currency and, hence, zero initial investment. At time T , one achieves a
sure profit of at least dT

j0
S( j0)

0 − RT S( j0)
0 after paying back the loan. That is, simply

by holding these amounts, i.e., ϕt = 1, ψt = −S( j0)
0 /B0 for t = 0, 1, . . . , T − 1,

one has

0 = S( j0)
0 + (− S( j0)

0

B0
)B0 → VT ≥ dT

j0 S( j0)
0 − RT S( j0)

0 > 0.

Similarly one can construct an arbitrage opportunity in the case that 0 < d j0 <

u j0 < R (Exercise 4). Thus if the market model is arbitrage-free, then P is non-
empty. �

Recall that an equivalent martingale measure serves as the pricing measure.

Corollary 23.4. If X is an attainable contingent claim, then

π0 = R−T
EQ X for any Q ∈ PT .
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Let us now turn to uniqueness of the EMM. Uniqueness of the equivalent martin-
gale measure Q has the following economic implications. Recall that completeness
of an arbitrage-free market refers to the attainability of all possible contingent
claims.

Proposition 23.5 (Uniqueness of EMM). An arbitrage-fee market model is com-
plete if and only if PT = {Q} is a singleton.

Proof. For arbitrage-freeness, we have at the outset that 0 < d j < R < u j for each
j . Suppose that the market is complete. Then for any contingent claim of the form
X = RT 1A, where A ∈ FT , it follows from the above corollary that

EQ11A = EQ21A for any Q1, Q2 ∈ PT .

Thus Q1 = Q2. Conversely, suppose PT = {Q}. If X is any contingent claim,
then for this market model, there is always an equivalent martingale measure under
which X is attainable (Exercise 4). Thus this probability must coincide with Q and
X is attainable, i.e., the market model is complete. �

Exercises

1. (i) (American Option) An American option refers to a derivative contract, that
permits exercise of the option at any time τ prior to expiry where τ has the
(stopping time) property [τ ≤ m] ∈ σ {S j : j ≤ m}. (i) Show that for
an American call option, there is no advantage to exercise prior to expiry,
i.e., an American call is equivalent to a European call, in the sense that
supτ ER−τV (Sτ ) = ER−T V (ST ), where the supremum is over all stopping
times τ ≤ T . [Hint: Use Jensen’s inequality.] (ii) Extend this to options with
an arbitrary convex payoff function V such that V (0) = 0. [Hint: Check that
V (λs) ≤ λV (s) for λ ≥ 1.]

(ii) Show that the pricing measure Q is equivalent to the historic measure P in
the sense that for any event A ∈ FT = σ(S0, S1, . . . , ST ), one has P(A) = 0
if and only if Q(A) = 0, i.e., the restrictions of P and Q to the σ -field
FT = σ(S0, S1, . . . , ST ) are mutually absolutely continuous.

(iii) Show that the probabilities cannot be mutually absolutely continuous on the
(infinite horizon) σ -field σ(S0, S1, . . . ). [Hint: Use the law of large numbers
to identify events that have positive probability under P and zero probability
under Q, and vice verse.]

2. (Regime Switching Model) Let Y0,Y1,Y2, . . . be a two-state 0, 1 Markov chain
with transition probabilities P(Yn+1 = j |Yn = i) = pi j ∈ (0, 1), i, j = 0, 1,
and initial distribution P(Y0 = i) = ri ∈ (0, 1). Imagine Yn as a state of the
market economy, healthy (1) or unhealthy (0), on the n-th period. Assume a risk-
free rate R = 1 + r exists for bonds. Suppose that security prices S0, S1, . . .
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evolve as Sn+1 = u(Yn,Yn+1)Sn , where 0 < u(0, 0) < R < u(0, 1) and 0 <

u(1, 0) < R < u(1, 1).

(a) Show that such securities together with risk-free bonds provide an arbitrage-
free market model and determine the price of a contingent claim X with
expiry T . [Hint: Consider the role of the historic probability in the proof of
Proposition 23.2.]

(b) Show that the market is not complete if p00 �= p10.

3. (Put-Call Parity) A (European) put option is a contract to allow the holder the
right to sell the underlying asset at the expiration time T for a previously agreed
upon (contracted) strike price K . The value of the contingent claim at time T to
the holder of the contract is its payoff X = (K − ST )

+ since the holder will sell
ST at the contracted price K upon the event [ST < K ], but otherwise will not
exercise the option. Let π, κ denote the present no-arbitrage prices of European
put and call contracts, respectively, for a strike price K at expiry T on an asset
with present price S0.

(a) Show that for a risk-free interest rate r , one has the put-call parity relation:
π = κ − S0 + (1+ r)−T K . Compute κ − π = (1+ r)−T

EQ{(ST − K )+ −
(K − ST )

+}.
(b) Give a no-arbitrage cash-flow argument based on the value at expiry of a

position of a trader (contract writer and holder) who presently buys the asset
at S0, buys a put option at π , and sells a call option for a price κ . [Hint: Argue
that the value of the trader’s portfolio at expiry is K regardless of which of
the two events [ST > K ] and [ST ≤ K ] occur. Then discount this value of
the portfolio to present value.]

4. Show that the finite market model given in this chapter with 0 < d j < u j , 1 ≤
j ≤ d, is arbitrage-free if and only if d j < R < u j for each j . Show that
if d = 1, then it is also complete. Give an example of an arbitrage-free but
incomplete finite market model.

5. (Discrete Time Lognormal Model) Suppose that the {Z1, Z2, . . . } are i.i.d.
lognormally distributed. Determine conditions on the parameters such that the
discounted price sequence {R−t St = R−t ∏t

j=1 Z j S0 : t − 0, 1, . . . T } is a
martingale.



Chapter 24
Special Topic: Optimal Stopping Rules

Optimal stopping rules are developed to maximize a reward or minimize a
loss in a martingale framework by stopping the process at the right time.
Applications include the pricing of American options and the “search for the
best” (secretary problem) algorithm.

On a probability space (Ω,F , P) an increasing sequence {Fn : n ≥ 0} of
sub-σ−fields of F , i.e., a filtration, is given. For example, one may have Fn =
σ {X0, X1, . . . , Xn} where {Xn}∞n=1 is a sequence of random variables. Also given
are real-valued integrable random variables {Yn : n ≥ 0}, Yn being Fn-measurable.
The objective is to find {Fn}∞n=1-stopping times τ ∗ that minimize EYτ in the class T
of all a.s. finite {Fn}∞n=1-stopping times τ . One may think of Yn as the loss incurred
by stopping at time n. Similar methods apply to the maximization problem when Yn

represents the gain in stopping at time n.
We begin with the simpler “finite horizon” problem of finding an optimal

stopping time τ ∗m that minimizes EYτ in the class Tm of all stopping times τ bounded
by m. This problem will be solved by a method of backward recursion.

We first give a somewhat heuristic derivation of τ ∗m . If Fn = σ {X0, . . . , Xn}
(n ≥ 0) and X0, X1, . . . , Xm−1 have been observed, then by stopping at time m− 1
the loss incurred would be Ym−1. On the other hand, if one decides to continue
sampling, then the loss would be Ym . But Ym is not known yet, since Xm has not
been observed at the time the decision is made to stop or not to stop sampling. The
(conditional) expected value of Ym , given X0, . . . , Xm−1, must then be compared to
Ym−1. In other words, τ ∗m is given, on the set [τ ∗m ≥ m − 1], by
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τ ∗m =
{

m − 1 if Ym−1 ≤ E(Ym | Fm−1),

m if Ym−1 > E(Ym | Fm−1).
(24.1)

As a consequence of such a stopping rule one’s expected loss, conditionally given
σ {X0, . . . , Xm−1}, is

Vm−1 := min{Ym−1,E(Ym | Fm−1)} on [τ ∗m ≥ m − 1]. (24.2)

Similarly, suppose one has already observed X0, X1, . . . , Xm−2 (so that τ ∗m ≥ m −
2). Then one should continue sampling only if Ym−2 is greater than the conditional
expectation (given {X0, . . . , Xm−2}) of the loss that would result from continued
sampling. That is,

τ ∗m =
{= m − 2 if Ym−2 ≤ E(Vm−1 | Fm−2),

≥ m − 1 if Ym−2 > E(Vm−1 | Fm−2), on [τ ∗m ≥ m − 2]. (24.3)

The conditional expected loss, given {X0, . . . , Xm−2}, is then

Vm−2 := min{Ym−2,E(Vm−1 | Fm−2)} on [τ ∗m ≥ m − 2]. (24.4)

Proceeding backwards in this manner one finally arrives at

τ ∗m =
{= 0 if Y0 ≤ E(V1 | F0)

≥ 1 if Y0 > E(V1 | F0), on [τ ∗m ≥ 0] ≡ Ω.
(24.5)

The conditional expectation of the loss, given F0, is then

V0 := min{Y0,E(V1 | F0)}. (24.6)

More precisely, Vj are defined by backward recursion,

Vm := Ym, Vj := min{Y j ,E(Vj+1 | F j )} ( j = m−1,m−2 . . . , 0), (24.7)

and the stopping time τ ∗m is defined by

τ ∗m := min{ j : 0 ≤ j ≤ m, Y j = Vj }. (24.8)

Although the optimality of τ ∗m is intuitively clear, a formal proof of its optimality is
worthwhile.

Theorem 24.1. (a) The sequence {Vj : 0 ≤ j ≤ m} is a {F j }-submartingale. (b)
The sequence {Vτ∗m∧ j : 0 ≤ j ≤ m} is a {F j }-martingale. (c) One has

E(Yτ | F0) ≥ V0 a.s. ∀ τ ∈ Tm,
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E
(
Yτ∗m | F0

) = V0 a.s. (24.9)

In particular, τ ∗m is optimal in the class Tm .

Proof. (a) By (24.7), Vj ≤ E(Vj+1 | F j ).
(b) We need to prove E

(
Vτ∗m∧( j+1) | F j

) = Vτ∗m∧ j . This requires showing for an
arbitrary F j -measurable bounded real-valued random variable Z that

E
(
Z Vτ∗m∧ j

) = E
(
Z Vτ∗m∧( j+1)

)
(0 ≤ j ≤ m − 1). (24.10)

For this write

E
(
Z Vτ∗m∧ j

) = E
(
Z Vτ∗m∧ j1[τ∗m≤ j]

)+ E
(
Z Vτ∗m∧ j1[τ∗m> j]

)

= E
(
Z Vτ∗m∧( j+1)1[τ∗m≤ j]

)+ E
(
Z Vj1[τ∗m> j]

)
. (24.11)

But, on [τ ∗m > j], Vj = E(Vj+1 | F j ). Also, [τ ∗m > j] ∈ F j . Therefore,

E

(
Z Vj1[τ∗m> j]

)
= E

[
Z1[τ∗m> j]E(Vj+1 | F j )

]

= E

(
Z Vj+11[τ∗m> j]

)
= E

(
Z Vτ∗m∧( j+1)1[τ∗m> j]

)
. (24.12)

Using (24.11) in (24.12) one gets (24.10).
(c) Let τ ∈ Fm . Since Y j ≥ Vj for all j (see (24.7)), one has Yτ ≥ Vτ . By

Theorem 11.1 and the submartingale property of {Vj }mj=0 it now follows that

E(Yτ | F0) ≥ E(Vτ | F0) ≥ V0. (24.13)

This gives the first relation in (24.9). The second relation in (24.9) follows by the
martingale property of {Yτ∗m∧ j }mj=0 (and Theorem 11.1). By taking expectations
in (24.9) the optimality of τ ∗m is established. �
Remark 24.1. In the minimization of EYτ over Tm , Yn need not be Fn-measurable.
In such cases one may replace Yn by E(Yn | Fn) = Un , say, and note that, for every
{Fn}∞n=1-stopping time τ ,

E(Yτ ) =
m∑

j=0

E(Y j1[τ= j]) =
m∑

j=0

E
[
E(Y j1[τ= j] | F j )

] =
m∑

j=0

E[1[τ= j]U j ) = EUτ .

Hence, the minimization of EYτ reduces to the minimization of EUτ over Tm .
Also, instead of minimization, one could as easily maximize EYτ over Tm .

Simply replace min by max in (24.7), and replace ≥ by ≤ in (24.9). We state this as
a corollary below.

Corollary 24.2. Let Vj := max{Y j ,E(Vj+1 | F j )} ( j = m − 1,m − 2, . . . , 1, 0),
Vm = Ym , τ ∗m = min{ j : 0 ≤ j ≤ m,Y j = Vj }. Then:
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a. {Vj : j = 0, 1, . . . ,m} is a {F j }-supermartingale.
b. {Vτ∗m∧ j : j = 0, 1, . . . ,m} is a {F j }-martingale.
c. E(Yτ | F0) ≤ V0 a.s. ∀ τ ∈ Tm .
d. E(Yτ∗m | F0) = V0 a.s. In particular, τ ∗m is optimal in Tm for the problem of

maximizing E(Yτ ), and the maximum value is E(V0).

Remark 24.2. Let T j,m denote the set of all stopping times τ such that j ≤ τ ≤
m a.s. It follows from the backward recursion, in the construction of the optimal
stopping rule in Theorem 24.1, that the optimal stopping rule in the class T j,m is
τ ∗j,m := min{ j ≤ k ≤ m : Yk = Vk}, and the corresponding optimal value is EVj ,
and that Vj = E[Yτ∗j,m | F j ]. Note that Vj maximizes the conditional expectation
E(Yτ | F j ) in the class of all τ in T j,m .

Example 1 (Search for the Best Algorithm (Secretary Problem)). Suppose there are
m ≥ 2 candidates for a position. Assume their qualifications can be measured on
a numerical scale from the worst to the best, with no ties. To be precise, suppose
that they can be ranked from worst to best as 1, 2, . . . ,m. Assume also that the
candidates are interviewed one after another and rejected until the j-th candidate
is chosen, say j = 1, . . . ,m. Let W j be the probability that j-th person chosen is
the best. The problem1 is to find a stopping rule τ that maximizes the probability
Wτ , among all stopping rules τ . Let F j denote the σ -field generated by the first j
observations X1, . . . , X j .

Define the F j -measurable random variables

Y j := E(W j | F j ) = P(X j = M j | F j ), (24.14)

where M j := max{X1, . . . , X j }, j = 1, . . . ,m. If X j = M j , i.e., X j , is the top
ranked among the first j observations, then the condition probability (given X1, . . . ,
X j ) that X j = m is the top ranked (maximum) overall is j/m; if X j < M j then of
course this conditional probability is zero. Therefore,

Y j = j

m
1{X j=M j }. (24.15)

Also, for every τ ∈ Tm , as explained above,

EYτ =
m∑

j=1

E
(
Y j1{τ= j}

) =
m∑

j=1

E
[
E(W j | F j )1{τ= j}

]

1The secretary problem has an interesting history recorded by Ferguson (1989), with numerous
references. There is also a rather large literature on generalizations to lower order preferences than
the best, e.g., search for second best, to partially ordered preferences, and so-on of interest in
theories and models for ecological foraging, on-line marketing, and others.
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=
m∑

j=1

E
[
E(1{τ= j}W j | F j )

]

=
m∑

j=1

E
(
1{τ= j}W j

) = EWτ .

Hence, the maximum of EWτ over Tm is also the maximum of EYτ over Tm . In order
to use Theorem 24.1 with min replaced by max in (24.7) and “≥” replaced by “≤”
in (24.9), we need to calculate Vj (1 ≤ j ≤ m). Now Vm = Ym and (see (24.15))

E(Ym | Fm−1) = m

m
P(Xm = Mm | Fm−1) = 1

m
(Mm = M).

Since (m − 1)/m ≥ 1/m, it then follows that

Vm−1 : = max {Ym−1,E(Ym | Fm−1)}
= m − 1

m
1{Xm−1=Mm−1} +

1

m
1{Xm−1<Mm−1}.

Then,

E(Vm−1 | Fm−2)

= m − 1

m
P (Xm−1 = Mm−1 | Fm−2)+ 1

m
P (Xm−1 < Mm−1 | Fm−2)

= m − 1

m

1

m − 1
+ 1

m

m − 2

m − 1
= m − 2

m

(
1

m − 2
+ 1

m − 1

)

. (24.16)

To evaluate

Vm−2 := max {Ym−2,E(Vm−1 | Fm−2)}
note that if (m − 2)−1 + (m − 1)−1 ≤ 1 then (see (24.14) and (24.16))

Vm−2 = m − 2

m
1{Xm−2=Mm−2} +

m − 2

m

(
1

m − 2
+ 1

m − 1

)

1{Xm−2<Mm−2} (24.17)

so that a calculation akin to (24.16) yields

E(Vm−2 | Fm−3) = m − 3

m

(
1

m − 3
+ 1

m − 2
+ 1

m − 1

)

.

Assume, as a backward induction hypothesis, that
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E(Vj+1 | F j ) = j

m

(
1

j
+ 1

j + 1
+ · · · + 1

m − 1

)

, (24.18)

for some j such that

a j := 1

j
+ 1

j + 1
+ · · · + 1

m − 1
≤ 1. (24.19)

Then,

Vj := max{Y j ,E(Vj+1 | F j )} = max

{
j

m
1{X j=M j },

j

m
a j

}

= j

m
1{X j=M j } +

j

m
a j1{X j<M j },

and, since P(X j = M j | F j−1) = 1/j , it follows that

E(Vj | F j−1) = j − 1

m

(
1

j − 1
+ 1

j
+ · · · + 1

m − 1

)

= j − 1

m
a j−1.

The induction is complete, i.e., (24.18) holds for all j ≥ j∗, where

j∗ := max{ j : 1 ≤ j ≤ m, a j > 1}. (24.20)

In other words, one gets

E(Vj+1 | F j ) = j

m
a j for j∗ ≤ j ≤ m. (24.21)

Also,

Vj∗ ≡ max
{
Y j∗ ,E(Vj∗+1 | F j∗)

} = j∗

m
a j∗ , (24.22)

since a j∗ > 1. In particular, Vj∗ is nonrandom, which implies

E(Vj∗ | F j∗−1) = j∗

m
a j∗ ,

which in turn leads to

Vj∗−1 ≡ max
{
Y j∗−1,E(Vj∗ | F j∗−1)

} = j∗

m
a j∗ .

Continuing in this manner one get
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Vj = j∗

m
a j∗ for 1 ≤ j ≤ j∗. (24.23)

The optimal stopping rule is then given by (see (24.8))

τ∗m =
⎧
⎨

⎩

min{ j : j ≥ j∗ + 1, X j = M j }, if X j = M j for some j ≥ j∗ + 1,

m, if X j �= M j for all j ≥ j∗ + 1.
(24.24)

For, if j ≤ j∗, then Y j < E(Vj+1 | F j ) = ( j∗/m)a j∗ . On the other hand, if
j > j∗, then a j ≤ 1 so that: (i) Y j ≥ E(Vj+1 | F j ) = ( j/m)a j on {X j = M j } and
(ii) 0 = Y j < E(Vj+1 | F j ) on {X j < M j }. Simply stated, the optimal stopping rule
is to draw j∗ observations and then continue sampling until an observation larger
than all the preceding shows up (and if this does not happen, stop after the last
observation has been drawn). The maximal probability of stopping at the maximum
value is then

E(V1) = V1 = j∗

m
a j∗ = j∗

m

(
1

j∗
+ 1

j∗ + 1
+ · · · + 1

m − 1

)

. (24.25)

Finally, note that, as m →∞,

a j∗ ≡ 1

j∗
+ 1

j∗ + 1
+ · · · + 1

m − 1
→ 1, (24.26)

where the difference between the two sides of the relation “≈” goes to zero. This
follows since j∗ must go to infinity (as the series

∑∞
1 (1/j) diverges and j∗ is

defined by (24.20)) and a j∗ > 1, a j∗+1 ≤ 1. Now,

a j∗ = 1

m

m−1∑

j= j∗

1

j/m
≈
∫ 1

j∗/m

1

x
dx = − log( j∗/m). (24.27)

Combining (24.26) and (24.27) one gets

− log
j∗

m
≈ 1,

j∗

m
∼ e−1, (24.28)

where the ratio of the two sides of “∼” goes to one, as m →∞. Thus,

lim
m→∞

j∗

m
= e−1, lim

m→∞E(V1) = e−1. (24.29)

Example 2 (American Options). An American option in mathematical finance
refers to contracts that may be exercised at any stopping time prior to the contracted
expiry date T . For example, an American call would permit the holder the option
to buy the stock at the strike price K at any stopping time τ ≤ T ; see Exercise 6.
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Similarly an American put option gives the holder the right to sell the stock at the
strike price K at any stopping time prior to T . Recall the binomial tree model for a
single security St = ∏t

j=1 Z j S0 and risk-free bonds Bt = Rt B0, t = 0, 1, . . . , T ,
where R = 1+ r for the risk-free rate r ≥ 0 treated in Chapter 23. For an American
put option over a time horizon of length T in this market model it is natural to
consider the quantity

π0 = max
τ∈TT

EQ(R
−τ (K − Sτ )

+|Fτ ),

where Q is an equivalent martingale measure (pricing measure); see Chapter 23.
From the perspective of the writer this is the price that would prepare for the worst
case exercise scenario by the holder of the put option. The maximum is achieved at
the exercise date

τ ∗ = min{t : (K − St )
+ = R−1

EQ(Vt+1|Ft )},

where Vt is recursively defined backwards in time by

Vt = max{(K − St )
+, R−1

EQ(Vt+1|Ft )} t = T − 1, T − 2, . . . 0

and VT = (K − ST )
+. In other words, one proceeds recursively backwards through

the tree comparing the intrinsic value of the option with the discounted expected
value (under Q) at each node and recording the larger of the two. The stopping rule
is to stop the first time the intrinsic value is larger than the discounted expected
value.

To complete this chapter we will consider the infinite horizon problem of finding
an optimal stopping rule in the class T and write

V (m)
j = Vj (24.30)

to emphasize the dependence of Vj on m.

Since V (m)
m = Ym , one has V (m+1)

m ≡ min{Ym,E(Ym+1 | Fm)} ≤ V (m)
m .

Assuming, as (backward) induction hypothesis, that V (m+1)
j+1 ≤ V (m)

j+1 for some j
(0 ≤ j < m), one has

V (m+1)
j ≡ min

{
Y j ,E

(
V (m+1)

j+1 | F j

)}
≤ min

{
Y j ,E

(
V (m)

j+1 | F j

)}
≡ V (m)

j .

(24.31)
Hence, V (m+1)

j ≤ V (m)
j for 0 ≤ j ≤ m, and for each j the sequence {V (m)

j : m ≥ j}
is decreasing (as m ↑). Let V (∞)

j denote the limit of V (m)
j as m → ∞. Since V (m)

j

is F j -measurable (for every m) so is V (∞)
j . If one assumes
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E

(

sup
n≥0

Y−n

)

<∞, (24.32)

then, writing Z = supn≥1 Y−n , one has

− E(Z | F j ) ≤ V (∞)
j ≤ Y j ( j ≥ 0). (24.33)

The right side of the inequality follows from V (m)
j ≤ Y j . For the left side use:

(i)V (m)
m ≡ Ym ≥ −Y−m ≥ −Z , so that V (m)

m ≡ E(V (m)
m | Fm) ≥ −E(Z | Fm) and

(ii)backward induction, to get V (m)
j ≥ −E(Z | F j ) (Exercise 1). Thus (24.33) holds

for V (m)
j (m ≥ j) in place of V (∞)

j . Now take limit as m ↑ ∞. In particular, V (∞)
j

is integrable. It is natural to ask if EV (∞)
0 is the optimum value for the original

problem, since EV (m)
0 is the optimum value for the truncated problem. There

are simple examples to show that this is not true without additional assumptions
(Exercises 2 and 3). To see what needs to be assumed, notice first that the optimum
value is finite; indeed,

− E(Z) ≤ inf
τ∈T

EYτ ≤ EY1. (24.34)

Therefore, given ε > 0, there exists τε ∈ T such that EYτε < infEYτ + ε. Such a
τε is called a ε-optimal stopping time. Suppose that, for each ε > 0,

lim
m→∞EYτε∧m = EYτε . (24.35)

Then by taking mε sufficiently large one has

EYτε∧mε < inf
τ∈T

EYτ + ε. (24.36)

But EV (mε)
0 ≤ EYτε∧mε . Therefore,

EYτ∗mε − EV (mε)
0 < inf

τ∈T
EYτ + ε, (24.37)

implying EV (∞)
0 < infτ∈T EYτ + ε, so that

EV (∞)
0 ≤ inf

τ∈T
EYτ . (24.38)

A simple sufficient condition for (24.35) (as well as (24.32)) is that the sequence
{|Yn|}∞n=0 is bounded by an integrable random variable. For some applications this
assumption is too stringent, although a direct verification of (24.35) is possible.
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Theorem 24.3. Let {Yn : n ≥ 0} be an integrable sequence of random variables
such that (24.32) holds:

a. Then for every ε > 0 a bounded ε-optimal stopping time exists.
b. Assume (24.35) for a family of ε-optimal stopping times defined for all suffi-

ciently small ε. Then V (∞)
j := limm→∞ V (m)

j ( j ≥ 0) satisfy

− E(Z | F j ) ≤ V (∞)
j ≤ Y j , (Z := sup

n≥0
EY−n ). (24.39)

V (∞)
j = min

{
Y j ,E(V

(∞)
j+1 | F j )

}
, (24.40)

EV (∞)
0 ≤ EYτ ∀ τ ∈ T . (24.41)

c. If Yn are non-negative, (24.35) holds, and the stopping time

τ ∗ := inf
{

j ≥ 0 : V (∞)
j = Y j

}
(24.42)

is a.s. finite, then τ ∗ is optimal, {V (∞)
τ∗∧ j : j ≥ 0} is a {F j }-martingale, and

E(Yτ∗ | F0) = V (∞)
0 a.s., EYτ∗ = EV (∞)

0 . (24.43)

Proof. We have already proved (a), (b) except for (24.40), which follows on letting
m →∞ in (24.7).

(c) By relations (24.11), (24.12), with τ ∗m replaced by τ ∗, it follows that {V (∞)
τ∗∧ j :

j ≥ 0} is a {F j }∞j=0-martingale. Therefore,

E

(
V (∞)
τ∗∧ j | F0

)
= E

(
V (∞)
τ∗∧0 | F0

)
= E

(
V (∞)

0 | F0

)
= V (∞)

0 a.s. (24.44)

Since V (∞)
n ≥ 0 for all n (in view of the non-negativity of Yn), one may apply

Fatou’s Lemma in (24.44) to obtain

E

(
V (∞)
τ∗ | F0

)
= E

(

lim
j→∞ V (∞)

τ∗∧ j | F0

)

≤ lim
j→∞E

(
V (∞)
τ∗∧ j | F0

)
= V (∞)

0 a.s.

(24.45)
Since V (∞)

τ∗ = Yτ∗ , it follows that

E(Yτ∗ | F0) ≤ V (∞)
0 a.s. (24.46)

On the other hand, EYτ∗ ≥ EV (∞)
0 by (24.41). Therefore, (24.46) must be

an equality a.s. Hence, (24.43) is true. The second relation in (24.43) and the
inequality (24.41) prove the optimality of τ ∗. �
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Remark 24.3. For the problem of maximization of EYτ (or, E(Yτ | F0)), (24.32)
is to be replaced by Z := E(supn Y+n ) < ∞. The conclusions of Theorem 24.3

are modified accordingly, with (24.39) replaced by Y j ≤ V (∞)
j ≤ E(Z | F j ),

in (24.40). “min” is to be replaced by max, and the inequality in (24.41) is reversed.
The assumption of non-negativity in part (c) is to be replaced by the assumption that
{Yn}∞n=0 is bounded above by a constant.

Exercises

1. Prove the first inequality in (24.33). [Hint: Assume V (m)
j ≥ E(−Z | F j ) for some

j ≤ m. Then use Y j−1 ≥ E(−Z | F j−1) and E(V (m)
j | F j−1) ≥ E(−Z | F j−1)

to get E(V (m)
j−1 | F j−1) ≥ E(−Z | F j−1).]

2. Let Xn (n ≥ 1) be i.i.d., P(Xn = 1) = P(Xn = −1) = 1
2 . Let Fn =

σ {X1, . . . , Xn} (n ≥ 1). Define Yn := 2n
(n+1)

∏n
i=1(Xi + 1) (n ≥ 1).

(a) Show that there does not exist an optimal {Fn}∞n=1-stopping time τ ∗ such
that EYτ∗ maximizes EYτ in the class of all τ ∈ T . [Hint: Use the strong
Markov property of {Xn}∞n=1 to prove that, for every τ ∈ T , EYτ < EYτ+1.]

(b) Find an optimal τ ∗m in the class Tm , and calculate V (∞)
j := limm→∞ V (m)

j .
[Hint: Use Corollary24.2.]

(c) Show that τ ∗ defined by (24.42) is ∞ a.s. What other assumptions of the
analog of Theorem 24.3(b) are violated? (See Remark 24.3).

(d) Show that sup{EYτ : τ ∈ T } = 2.

3. Let {Xn : n ≥ 1} be as in Exercise 2, Yn := min{1, X1 + · · · + Xn} − n
n+1 ,

Fn := σ {X1, . . . , Xn} (n ≥ 1).

(a) Show that, for every τ ∈ Tm , EYτ ≤ − 1
2 . [Hint: E(Yτ ) ≤ E(X1 + · · · +

Xτ )− E τ
τ+1 = −E τ

τ+1 .]
(b) Let τ := inf{n ≥ 1 : X1 + · · · + Xn = 1}. Show that τ ∈ T and EYτ > 0.
(c) Show that sup{EYτ : τ ∈ T } is not the limit of EYτ+m as m →∞, where τ ∗m

is a stopping time that maximizes EYτ in the class of all τ in Tm .
(d) Provide a computation of EYτ in (b).

4. (a) Let γ → Y (γ, ω) be a concave function (on some interval I ) for a.s. all
ω ∈ Ω , and E|Y (γ j )| < ∞ for every γ ∈ I . Prove that γ → EY (γ j ) is
concave on I .

(b) Suppose that γ → νθ (γ ), θ ∈ Θ , is a family of uniformly bounded concave
functions on I . Show that γ → ν∗(γ ) = inf{νθ (γ ) : θ ∈ Θ} is concave on
I .

5. (i) Apply the solution to the secretary problem for the case m = 10 to
25 random samples, each of size m = 10 independently chosen from a
continuous distribution.
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(a) Calculate the proportion of times among these 25 in which the highest
score is obtained by the optimal stopping rule, and compare that with
the theoretical result (probability). [Hint: Check that j∗ = 3.]

(b) Calculate the proportion of times in which one of the two highest scores
is obtained [Note that in (a), (b) it does not matter which continuous
distribution is sampled because the m! permutations of the orders are
equally likely.]

(ii) For the secretary problem show that

P(τ ∗m = j∗ + j) = 1

j∗ + j

j−1∑

k=0

(−1)k
(

j − 1

k

) k∏

i=1

1

j∗ + j − i
,

j = 1, . . . ,m − j∗ − 1,

P(τ ∗m = m) = 1−
m− j∗−1∑

j=1

P(τ ∗m = j∗ + j).

[Hint: Let A j = [X j∗+ j = M j∗+ j ], j = 1, . . . ,m − j∗ and use
inclusion/exclusion to check that

P(A j ∩ Ac
j−1 ∩ · · · ∩ Ac

1)

= P(A j )+
j−1∑

k=1

(−1)k
∑

1≤i1<···<ik< j

P(A j ∩ Ai1 ∩ · · · ∩ Aik )

and use combinatorial principles for counting permutations.]
(iii) As an alternative, letting (n)k = n(n − 1) · · · (n − k + 1), 1 ≤ k ≤ n,

(n)k = 0, k > n, (n)0 = 1, derive the following formula for the secretary
problem:

P(τ ∗m = j∗ + j) =
m−1∑

k= j∗

(k − 1) j∗−1(k − j∗) j−1(m − k)1(m − j∗ − j)!
m! ,

j = 1, . . . ,m − j∗ − 1,

P(τ ∗m = m) = P(τ ∗m = m, M j∗ = m − 1)+ P(τ ∗m = m, M j∗ = m)

= j∗
(m − 2) j∗−1(m − 1− j∗)m− j∗−1(1)1

m!
+ j∗

(m − 1) j∗−1(m − j∗)!
m! .
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[Hint: Express P(τ ∗m = j∗ + j) = ∑m−1
k= j∗ P(τ ∗m = j∗ + j, M j∗ = k) and

compute the terms using combinatorial principles for permutations.]
(iv) Tabulate values for 1

mEτ ∗m = 1
m

∑
j ( j∗+ j)P(τ ∗m = j∗+ j) for the secretary

problem for m = 5, 6, 7, 8.
6. (American vs. European Call Options) Show that if the payoff function V is

convex and V (0) = 0, then there is no advantage to early exercise of the option.
Show that an American call option is equivalent to a European call option.

7. (American Put Option) An American put option is a contract that provides the
right to sell the stock at any time τ ≤ T for the strike price K , where τ is any
stopping time. The final value of such a contract is (K−Sτ )+. Compute the price
and stopping time strategy for an American call option in the binomial tree model
with parameters T = 3, r = .05, K = 50, S0 = 52, u = 1.07, d = .93, pu =
pd = .5.



Chapter 25
Special Topic: A Comprehensive Renewal
Theory for General RandomWalks

This chapter extends the analysis of renewal processes initiated in Chapter 8.
The renewal theorem has a rich history that culminated in a unified approach
due to David Blackwell.1 Among the most important ideas introduced by
Blackwell in this context is the notion of ladder variables. A comprehensive
treatment of this theory is presented here. Example applications include
the computation of certain self-similar fractal dimensions arising in iterated
function systems in this chapter, and ruin problems in insurance in special
topics Chapter 26.

Fix a non-degenerate probability distribution Q �= δ0 on [0,∞) and a measurable
function g : [0,∞)→ R, which is locally bounded, i.e., bounded on finite intervals.
The renewal equation is the fixed point equation

T u = u (25.1)

for locally bounded measurable functions u, where

T u(x) = g(x)+
∫

[0,x)
u(x − y)Q(dy) = g(x)+ (u ∗ Q)(x), x ≥ 0. (25.2)

Adopting the convention that functions and measures are zero on the negative half-
line, the equation may be viewed as an equation on all of R. Formally, repeated
iterations of (25.2) yield

1Blackwell (1953).
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u = T u = g + u ∗ Q = g + (g + (u ∗ Q)) ∗ Q

= g + g ∗ Q + u ∗ Q∗2

...

= g +
n∑

m=1

g ∗ Q∗m + u ∗ Q∗(n+1) → g ∗
∞∑

m=0

Q∗m = g ∗U, (25.3)

where the m-fold convolution Q∗m is defined recursively by Q∗0(dy) = δ0(dy),
Q∗(m+1)(dy) = Q ∗ Q∗m(dy),m ≥ 0. So, formally, a solution to (25.1) is given by

u(x) =
∫

[0,x)
g(x − y)U (dy) = (g ∗U )(x), (25.4)

where U (dy) is the infinite convolution measure, referred to as the renewal measure.

U (dy) =
∞∑

n=0

Q∗n(dy). (25.5)

While this solution is not rigorous, the following proposition provides conditions
for when it is valid.

Proposition 25.1. Let U (dy) denote the renewal measure defined by (25.5). Then,
U [0, y) < ∞ for all y ≥ 0. Moreover, for locally bounded, measurable g, the
function u(x) = ∫ x

0 g(x− y)U (dy), x ∈ R, solves (25.1) uniquely among functions
bounded on finite intervals.

Proof. Let X j , j ≥ 1, be i.i.d. with distribution Q, and δ > 0 such that θ = P(X1 >

δ) > 0. Let r be the smallest integer greater than or equal to x/δ. Write N = N [0, x)
for the number of visits to [0, x) by the random walk {Sn = X1+· · ·+ Xn : n ≥ 1}.
Then P(N ≥ n) ≤ P(#{1 ≤ j ≤ n : X j > δ} < r) =∑r−1

m=0

(n
m

)
θm(1− θ)n−m ≤

rnrαn, α := max{θ, 1 − θ}. Hence U [0, x) ≤ ∑∞
n=0 P(N ≥ n) < ∞. To prove

that (25.1) is a locally bounded solution, first note that it is clearly locally bounded.
Also,

u(x) =
∫

[0,x]
g(x − y)

∞∑

n=0

Q∗n(dy)

= g(x)+
∫

[0,x]
g(x − y)

∞∑

n=1

Q∗n(dy)

= g(x)+
∫

[0,x]
g(x − y)

∞∑

n=0

Q∗n ∗ Q(dy)

= g(x)+ u ∗ Q(x)
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= g(x)+
∫

[0,x]
u(x − y)Q(dy). (25.6)

So u satisfies the renewal equation (25.1) as well. For uniqueness, let v be the
difference of two solutions. Then v = Q ∗ v, and, in particular therefore,

v(x) =
∫

[0,x)
v(x − y)Q∗ j (dy), j = 1, 2, . . . .

Since, Q �= δ0, by the law of large numbers, Q∗ j [0, x] → 0 as j → ∞, for v
bounded on [0, x], one has v(x) ≤ ||v||∞Q∗ j [0, x] → 0 as j →∞, i.e., v(x) = 0
for all x . �
Remark 25.1. Another proof of the finiteness of U [0, x) for all x follows from
Stein’s lemma in Lemma 1 below.

Example 1. For an especially simple example that can be solved directly, suppose
that Q(dx) = δh(dx), for a fixed h > 0, in the renewal equation (25.1) and (25.2).
That is, u(x) = g(x), 0 ≤ x ≤ h, and

u(x) = g(x)+ u(x − h), x ≥ h. (25.7)

Then simple iteration yields, inductively, that u(nh) =∑n
j=0 g( jh), n = 1, 2, . . . .

More generally, u(x) =∑[ x
h ]

j=0 g(x− jh), n ≥ 0. In particular, assuming
∑∞

k=0 g(k)
converges, then

lim
n→∞ u(nh) =

∞∑

k=0

g(kh) ≡ h

μ

∞∑

k=0

g(kh),

where μ = h is the mean of Q and h is the lattice spacing. While technically simple,
this and related examples occur in the computation of certain fractal dimensions as
illustrated in Example 3 at the end of this chapter.

As indicated by the above proof, a probabilistic interpretation of the renewal
measure U (dy) is obtained as follows. Let Sn, n ≥ 0, denote the random walk
starting at 0 on R with increments distributed as Q. Then, for B ∈ B,

U (B) =
∞∑

n=0

Q∗n(B) =
∞∑

n=0

P(Sn ∈ B)

=
∞∑

n=0

E1B(Sn) = E

∞∑

n=0

1B(Sn), (25.8)

is the expected number of visits to B by the random walk.
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Definition 25.1. A random variable X is said to have a lattice distribution if there
are numbers b and h > 0 such that P(X ∈ {b + nh : n ∈ Z}) = 1. The largest such
h is the lattice span. If X does not have a lattice distribution, then one says that X
has a non-lattice distribution. In the case b = 0, the lattice distribution is said to be
arithmetic.

Remark 25.2. The issue of whether a lattice distribution is purely arithmetic or not
is not consequential to the renewal theory presented below since X −b is arithmetic
without changing h when X is lattice distributed. While the results are stated for
arithmetic distributions, they easily extend to the more general lattice distributions
by a shift in the increments and, therefore, the mean.

Example 2. While renewal equations occur quite generally in a variety of situa-
tions, a simple probabilistic context is obtained as follows. Consider the simple
asymmetric random walk {Yn : n ≥ 0} on the integers, starting at 0, with
±1-valued increments such that P(Yn+1 − Yn = 1) = p > 1/2. Next let
Q({n}) = P(τ0 = n), the (defective) distribution of the first return (renewal)
time τ0 = inf{n ≥ 1 : Yn = 0}. Let g(n) = δ0(n), n ≥ 0. Let Sn, n ≥ 0,
denote the random walk on the positive integers starting at zero with increment
distribution Q. Then the state Sn of the renewal process is the time of the n-th
return to zero by the simple random walk Y , and Q is an arithmetic distribution
with lattice span two. One has simply by countable additivity and conditioning that
u(n) = P(Yn = 0) = δ0(n) +∑n

j=0 u(n − j)Q({ j}), n ≥ 0, solves the renewal
equation (25.1) for this choice of g and Q.

Remark 25.3. For a bit of terminology, more generally, a random walk Sn, n ≥ 0,
having non-negative increments with S0 = 0 is referred to as an ordinary renewal
process. If S0 �= 0 a.s. is a non-negative random variable, then one says that
Sn, n ≥ 0, is a delayed renewal process. In either case, the values Sn are referred
to as renewal times and the increments Xn = Sn − Sn−1, n ≥ 1, are referred
to as the time between renewals. The stochastic process recording the number of
renewals in time t , N (t) = sup{n : Sn ≤ t}, t ≥ 0, is referred to as the renewal
counting process. In Chapter 5 it was shown that if the times X1, X2, . . . are i.i.d.
exponentially distributed random variables, then the counting process N (t), t ≥ 0,
is a Poisson process.

An important class of renewal processes arise when considering the successive
returns (recurrences) of a Markov chain to some specific state. More generally, a key
probability problem for renewal theory is the determination of limn→∞ u(n) from
the renewal structure embodied by the renewal equation, e.g., see Corollary 25.7.

The history of theoretical developments in this area is one of gradual accomplish-
ments under various hypotheses on the distribution Q. However, the penultimate
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theorem2 is David Blackwell’s synthesis of these accomplishments that yields a
generalization to distributions Q on R having positive mean.

Theorem 25.2 (Blackwell’s Renewal Theorem). Let X1, X2, . . . be an i.i.d.
sequence of real-valued random variables having common distribution Q, defined
on a probability space (Ω,F , P) with μ = EX1 ∈ (0,∞]. Let S0 = 0,
Sn = X1+ · · ·+ Xn, n ≥ 1. For any y > 0 let U [a, a+ y) =∑∞

n=0 Q∗n[a, a+ y),
a ∈ R.

1. If Q is non-lattice, then, with the convention that y
∞ = 0, lima→∞U [a, a+ y) =

y
μ

, and lima→−∞U [a, a + y) = 0.
2. If Q is an arithmetic distribution with lattice span h, then, with the conven-

tion that h
∞ = 0, limm→∞U [mh, (m + k)h) = kh

μ
, (m, k ∈ Z+), and

lima→−∞U [a, a + y) = 0.

Let us note that, as observed earlier, U [a, a+ y) denotes the expected number of
n ≥ 0 that a ≤ Sn < a+ y. By the law of large numbers Sn

n → μ a.s. as n →∞. In
particular, for μ > 0, one has Sn → ∞ almost surely. Therefore, with probability
one, for fixed a and y > 0, a ≤ Sn < a + y for at most finitely many n.

The proof of Theorem 25.2 will be obtained as a result of Blackwell’s overall
synthesis of earlier special cases involving non-negative random variables that lead
to his relaxation to real-valued random variables having a positive mean.
Non-negative lattice case: Noting that U [mh, (m+k)h) = E(N(m+k)h−Nmh), this
case was treated in Chapter 8. Theorem 25.2(2) follows directly from Theorem 8.5.
Non-negative, non-lattice case: Next let us consider the case of non-lattice but
non-negative random variables. First let

Nk[a, a + y) =
∞∑

j=1

1[a,a+y)(Xk+1 + · · · + Xk+ j ), y > 0, a ∈ R. (25.9)

Note that for constants a, y, the distribution of Nk[a, a + y) does not depend on k.
Let N [a, a + y) = N0[a, a + y), and U [a, a + y) = ENk[a, a + y). So U (T ) ≡
U [0, T ) is the expected number of sums Sk =∑k

j=1 X j , k ≥ 1, such that 0 ≤ Sk <

T . In the case of a random variable Z , the random variable U [Z , Z + y) is defined
by the composite function U [·, · + y) ◦ Z on Ω .

Lemma 1. U [a, a + y) <∞ for all a ∈ R, y > 0.

Proof. This follows immediately from Stein’s lemma (Corollary 11.5). �
Lemma 2. Suppose Z = g(X1, . . . , Xk) for some measurable function g. Then,
for any A ∈ σ(X1, . . . , Xk)

2In recent years a proof by coupling methods has emerged in some generality. The difficulty in
establishing finiteness of the coupling time is significantly more non-trivial than in the lattice case
treated in Chapter 8. Blackwell’s approach using ladder variables nonetheless stands the test of
time since ladder variable techniques continue to find new applications.
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E1A Nk[Z , Z + y) = E1AU [Z , Z + y).

Proof. The proof essentially follows by conditioning and the substitution property3

for conditional expectation.

E1A Nk[Z , Z + y) = E1AE[Nk[Z , Z + y)|σ(X1, . . . , Xk)]
= E1AU [a, a + y)|a=Z

= E1AU [Z , Z + y), (25.10)

by definition of U [Z , Z + y). �
Lemma 3. For any a ∈ R, y > 0,

U [a, a + y) ≤ U [0, y)+ 1.

Proof. Let Ak = [Sk−1 < a ≤ Sk]. In view of the non-negativity assumption on
the event Ak , k is the first possible sum Sk to be counted in N [a, a + y), and the
count N [a, a + y) depends on how many additional sums Xk, Xk + Xk+1, . . . may
be added so that Sk + Xk+1 + · · · + Xk+ j < a + y. Thus, from this and Lemma 2,
one has

EN [a, a + y) =
∑

k

EN [a, a + y)1Ak

≤
∑

k

E{Nk[0, y)+ 1}1Ak

=
∑

k

E{U [0, y)+ 1}1Ak

≤ U [0, y)+ 1.

�
Lemma 4. Suppose gn, n = 1, 2, . . . is a sequence of non-negative measurable
functions and D is a real number such that lim supn gn = D a.s., and limn Egn = D.
Then gn → D a.s. as n →∞.

Proof. Suppose, for contradiction, limn gn is not a.s. D. Then lim infn gn < D on
a set of positive probability. This means there exist some δ > 0 and a subsequence
gnk ≤ D−ε for all k on a set of probability δ, and gnk ≤ D outside of this set. Thus,
lim infk Egnk < D, which contradicts limE gn = D. It follows that lim infn gn ≥
D − ε a.s. This being true for all ε > 0, one must have lim infn gn = D a.s. so that
gn → D almost surely. �

3See BCPT p. 38.
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Theorem 25.3. For any fixed integer k ≥ 1, y > 0, and sequences αn , βn, n ≥ 1,
such that αn →∞, βn →∞, and

D(y) = lim sup
a→∞

U [a, a + y) = lim
n→∞U [αn, αn + y),

d(y) = lim inf
a→∞ U [a, a + y) = lim

n→∞U [βn, βn + y),

one has the following almost sure4 limits

ϕn = U [αn − Sk, αn − Sk + y)→ D(y),

and

ψn = U [βn − Sk, βn − Sk + y)→ d(y).

Proof. Observe that

N [a, a + y)1[0,a](Sk) = Nk[a − Sk, a − Sk + y)1[0,a](Sk),

and

N [a, a + y)1[a,∞(Sk) ≤ {k + Nk[0, y)}1[a,∞)(Sk).

Thus,

EU [a − Sk, a − Sk + y)1[0,a](Sk)

≤ U [a, a + y)

≤ EU [a − Sk, a − Sk + y)1[0,a](Sk)+ {k +U [0, y)}P(Sk ≥ a).(25.11)

Also, by Lemma 3

EU [a − Sk, a − Sk + y)1[0,a](Sk) ≥ EU [a − Sk, a − Sk + y)

− {1+U [0, y)}P(Sk ≥ a). (25.12)

Combining these bounds, one has

D(y) = lim
n

U [αn, αn + y)

≤ lim inf
n

(
EU [αn − Sk , αn − Sk + y)1[0,αn ](Sk)+ {k +U [0, y)}P(Sk ≥ αn)

)

4In Blackwell (1948) this limit is obtained in probability and involves a diagonal subsequence
argument to extend to an almost sure limit in a Corollary.
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≤ lim inf
n

(
EU [αn − Sk , αn − Sk + y)+ {k +U [0, y)}P(Sk ≥ αn)

) = lim inf
n→∞ Eϕn,

and, similarly,

d(y) ≥ lim sup
n

Eψn .

Moreover,

lim sup
n→∞

ϕn ≤ lim sup
a→∞

U [a, a+y) = D(y), lim inf
n→∞ ψn ≥ lim inf

a→∞ U [a, a+y) ≥ d(y).

In summary,

lim sup
n

ϕn ≤ D(y) ≤ lim inf
n

Eϕn, lim sup
n

Eψn ≤ d(y) ≤ lim inf
n

ψn,

and both sequences are uniformly bounded. For fixed y, apply Fatou’s lemma
to U [0, y) + 1 − ϕn ≥ 0, to obtain with a little algebra, that lim supn Eϕn ≤
E lim supn ϕn ≤ D(y). Observe that if P(lim supn ϕn < D(y)) > 0, then the
inequality E lim supn ϕn < D(y) is also strict. But then, as noted in summary,
lim supn Eϕn ≤ E lim supϕn < D(y) ≤ lim infn Eϕn , a contradiction. Thus, one
has lim supn ϕn = D(y) almost surely, and limn Eϕn = D(y). The assertion follows
from Lemma 4. The proof that ψn → d(y) is entirely analogous. �
Lemma 5. Assume that the distribution of X1 is non-lattice. Then for every ε > 0,
there is a number T > 0, such that for all t > T , there exist numbers c1, c2 for
which |t − ci | < ε, i = 1, 2, and limn→∞U [αn − c1, αn − c1 + y) = D(y),
limn→∞U [βn − c2, βn − c2 + y) = d(y).

Proof. Let V = {x : P(X1 ∈ J ) > 0 for every open interval J containing x}. In
view of the hypothesis, V cannot consist of integral multiples of a fixed number.
So there is a number T such that every open interval (a, b) of length ε with a >

T contains points of the form s = ∑∞
i=1 ni xi , xi ∈ V, i ≥ 1, and ni are non-

negative integers5 all but finitely many of which are zero. For any open interval J
containing s, one has P(Sk ∈ J ) > 0, where k = ∑

i ni . Now, Lemma 5 implies
the existence of c1, c2 ∈ J such that U [αn − c1, αn − c1 + y) → D(y), and
U [βn − c2, βn − c2 + y)→ d(y) as n →∞. �
Lemma 6. For all positive numbers a, y, �, one has

P(N [a, a + y) > 0)

P(X1 > 0)
≤ U [a, a + y) ≤ P(N [a, a + y) > 0)

P(X1 ≥ y)
(25.13)

5This is a number theory fact whose proof may be found in Feller (1971) p. 147, Lemma 2(b). It
also follows from Kronecker’s theorem; see Hardy and Wright (1938), Chap. III.
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and

P(X1 ≥ �+ y)

P(X1 > 0)
≤ P(N [a + y, a + y + �) = 0|N [a, a + y) > 0) ≤ P(X1 ≥ �)

P(X1 ≥ y)
.

(25.14)

Proof. To simplify notation, write N = N [a, a+ y), and N∗ = N [a+ y, a+ y+�).
Let

E j = [S j−1 < a ≤ S j ].

Then [N > 0] = ∪∞j=1 E j is a disjoint union. Also U [a, a + y) = ∑∞
k=1 k P(N =

k) =∑∞
k=1 P(N ≥ k), and

E j ∩ ∩k−1
i=1 [X j+i = 0] ⊂ E j ∩ [N ≥ k] ⊂ E j ∩ ∩k−1

i=1 [X j+i < y].

Thus,

P(E j )Pk−1[X1 = 0] ≤ P(E j ∩ [N ≥ k]) ≤ P(E j )Pk−1(X1 < y).

Sum over j to obtain

P(N > 0)Pk−1(X1 = 0) ≤ P(N ≥ k) ≤ P(N > 0)Pk−1(X1 < y),

and then sum over k to obtain (25.13). To prove (25.14), fix an integer j and let
I1 = inf{i > j : Xi ≥ y}, I2 = inf{i > j : Xi > 0}. let F = [X I1 ≥ �], and
G = [X I2 ≥ �+ y]. Then

E j ∩ G ⊂ E j ∩ [N∗ = 0] ⊂ E j ∩ F,

and

P(G) =
∞∑

i= j+1

P(X j+1 = 0, . . . , Xi−1 = 0, Xi > 0, Xi ≥ �+ y)

=
∞∑

i= j+1

Pi− j−1(X1 = 0)P(X1 ≥ �+ y)

= P(X1 ≥ �+ y)

P(X1 > 0)
.

Similarly,

P(F) = P(X1 ≥ �)

P(X1 ≥ y)
.
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So P(E j )P(G) ≤ P(E j ∩ [N∗ = 0]) ≤ P(E j )P(F). Sum over j to
obtain (25.14). �

We are now prepared to prove Blackwell’s Renewal Theorem 25.2 in the case of
non-negative, non-lattice displacements X . Recall U (T ) = U [0, T ).

Theorem 25.4 (Renewal Theorem for the Non-lattice Case). Assume that the
displacement X is a non-negative and non-lattice random variable. Then, for every
y > 0,

lim
T→∞[U (T + y)−U (T )] = y

EX1
,

with the convention that 1/∞ = 0.

Proof. The plan is to show D(y) ≤ y
EX1

≤ d(y). That is to show for all y > 0,

D̃(y) ≤ 1

EX1
≤ d̃(y),

where D̃(y) = D(y)/y and d̃(y) = d(y)/y. However, since

N−1∑

j=0

U [a + j y

N
, a + ( j + 1)y

N
) = U [a, a + y),

one has Nd(y/N ) ≤ d(y), and N D(y/N ) ≥ D(y). Thus

D̃(y/N ) ≥ D̃(y), d̃(y/N ) ≤ d̃(y),

and it therefore suffices to show that

lim sup
y→0

D̃(y) ≤ 1

EX1
≤ lim inf

y→0
d̃(y). (25.15)

For this, for y > 0 choose ε ∈ (0, y), and an arbitrary positive number M . By
lemma 5, there are numbers ci , di such that for i = 0, 1, 2, . . . , ci ↑, di ↑

y − ε

M
< ci+1 − ci < y < di+1 − di ,

and

U [αn − di , αn − di + y)→ D(y), U [βn − ci , βn − ci + y)→ d(y).

First consider d̃(y). Write
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1 = P(X1 ≥ βn − c0)+
q∑

i=0

P(Ni > 0, N j = 0, j < i),

where Ni = N (βn−ci+1, βn−ci+1+ci+1−ci ) for i < q, and Nq = N (0, βn−cq),
with q chosen so that cq < βn ≤ cq+1. That is to say, for each fixed n, some Sk

are sure to exceed βn − c0. To see this consider the partition of the non-negative
half-line into adjacent intervals with endpoints

0 < βn−cq < βn−cq−1 < · · · < βn−ci+1−βn−ci < · · ·βn−c1 < βn−c0 <∞.

Either X1 ≥ βn − c0 or there is a right-most subinterval of [0, βn − c0) containing
at least one Sk . Now considering this partition and first using (25.14) of Lemma 6,
one has upon conditioning that

P(Ni > 0, N j = 0, j < i) = P(N j = 0, j < i |Ni > 0)P(Ni > 0)

≤ P(N (βn − ci , βn − ci + ci − c0) = 0|N (βn − ci+1, βn − ci ) > 0)

×P(N (βn − ci+1, βn − ci ) > 0)

≤ P(X1 ≥ ci − c0)

P(X1 > ci+1 − ci )
P(Ni > 0), (25.16)

and, using (25.13) of the same Lemma 6, P(Ni > 0) ≤ P(X1 > 0)Ui , where
Ui = ENi . Thus, one has

1 ≤ P(X1 ≥ βn−c0)+
M∑

i=0

P(X1 ≥ ci − c0)P(X1 > 0)Ui

P(X1 > ci+1 − ci )
+

∞∑

i=M+1

P(X1 ≥ ci − c0)

P(X1 > ci+1 − ci )
. (25.17)

Letting n →∞

P(X1 ≥ y) ≤ yd̃(y)P(X1 > 0)
M∑

i=0

P(X1 > iy − ε)+
∞∑

i=M+1

P(X1 > i(y − ε)).

(25.18)
Recall the elementary inequality for any non-negative random variable Z :

EZ − 1 ≤
∞∑

i=0

P(Z > i)− 1 ≤ EZ .

So, if EX1 is finite, then the upper bound in (25.18) converges and one has letting
M →∞,

P(X1 ≥ y) ≤ yd̃(y)(
EX1 + ε

y
+ 1), (25.19)
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and, letting ε → 0,

P(X1 ≥ y)

P(X1 > 0)
≤ d̃(y){EX1 + y}, (25.20)

so that 1 ≤ EX1 lim supy→0 d̃(y).

A similar argument applies to D̃(y) as follows. First,

1 ≥
M−1∑

i=0

P(N∗i > 0, N∗j = 0, j < i),

where N∗i = N (αn − di+1, αn − di+1 + di+1 − di ). Conditioning on [N∗i > 0] and
using (25.14) and (25.13) of Lemma 6 in succession as before, one obtains

1 ≤
M−1∑

i=0

P(X1 ≥ di+1 − d0)P(X1 ≥ di+1 − di )U∗
i

P(X1 > 0)
, (25.21)

where U∗
i = EN∗i . Letting n →∞, with obvious replacements,

P(X1 > 0)

P(X1 > y + ε
M )

≥ y D̃(y)
M−1∑

i=0

P(X1 ≥ (i + 1)y + ε). (25.22)

Then,

P(X1 > 0)

P(X1 ≥ y)
≥ D̃(y){EX1 − y}, (25.23)

and therefore

1 ≥ EX1 lim sup
y→0

D̃(y). (25.24)

If EX1 is infinite, then note that the lower bound in (25.22) diverges as M → ∞,
so that D̃(y) = 0 for all y > 0. �
General Case 0 < EX1 ≤ ∞: Finally we drop the condition that the random
variables be nonnegative and require only that the mean be positive (possibly
infinite). We are now in a position to use these developments for the extension
to Theorem 25.2. Blackwell’s synthesis begins by consideration of successive new
record highs of the random walk starting at zero, the so-called ladder variables. Let

N1 = inf{n : Sn > 0}, Nk+1 = inf{n : SNk+n − SNk > 0}, k = 1, 2 . . . ,
(25.25)
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and

Z1 = SN1 , Zk = SN1+···+Nk − SN1+···+Nk−1, k = 1, 2, . . . . (25.26)

Then Z1, Z2, . . . is an i.i.d. sequence of nonnegative (possibly defective) random
variables with

SN1+···+Nk = Z1 + · · · + Zk, k = 1, 2, . . . . (25.27)

The ladder points (N1 + · · · + Nk, SN1+···+Nk ), k ≥ 1, comprise an i.i.d. sequence.
The random variables N1, N1+ N2, . . . are referred to as strict ascending ladder

times and the successive values SN1+···+Nk are the ladder heights. The qualifier
“strict”refers to the strict inequality defining N1 and the successive ladder times,
while “ascending”depicts the direction of the inequality; for example, the definition
of a descending ladder time would involve the inequality ≤ in place of >.

Let

V (t) = #{n : Tn := Z1 + · · · + Zn ≤ t}, v(t) = EV (t), (25.28)

and

R(t) = #{n < N1 : −t ≤ Sn ≤ 0}, r(t) = ER(t). (25.29)

Lemma 7.

v(t) <∞ for all t.

Proof. This follows from Stein’s lemma (Corollary 11.5). �
Proposition 25.5 (Wald’s Formula). EN1 < ∞. Moreover, μ and EZ1 are both
finite or both infinite, with

μEN1 = EZ1.

Proof. Without loss of generality one may assume that the displacements are
bounded above, i.e., P(X1 ≤ M) = 1 for some number M . Otherwise one may
truncate the displacements by X∗n = Xn ∧M, n ≥ 1, and note that correspondingly,
N1 ≤ N∗1 . Also, since μ > 0, for M sufficiently large one has μ∗ > 0 as well.
So the result for truncated displacements applies to non-truncated displacements as
well. Now, for Tn = Z1 + · · · + Zn , write

Tk

k
= SN1+···+Nk

N1 + · · · + Nk

N1 + · · · + Nk

k
, (25.30)
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and let k → ∞. By the strong law of large numbers one has EZ1 = μEN1.
Moreover, under the boundedness assumption on displacements, one has Zk, k ≥ 1,
are bounded as well. In particular, EN1 < ∞ in this case, and in general (since
N1 ≤ N∗1 ). �
Lemma 8.

r(t) <∞ for all t ≥ 0.

Proof. As an application of Wald’s formula applied to N1 = inf{n : Sn > 0}, one
has EN1 <∞. The finiteness of r(t) follows. �
Proposition 25.6. For a ∈ R, y > 0,

U [a, a + y) =
∫ ∞

0
{r(t − a)− r(t − a − y)}v(dt).

Proof. Let N̂0 = #{n : 0 ≤ n < N1, a ≤ Sn < a + y},

N̂k = #{n :
k∑

j=0

N j ≤ n <

k∑

j=0

N j + Nk+1, a ≤ Sn < a + y}, k ≥ 1.

Then, recalling S∑k
j=0 N j

= Tk , writing n = ∑k
j=0 N j + m, 0 ≤ m ≤ Nk+1, one

has on [Tk = t],

[a ≤ Sn < a + y] = [−(t − a) ≤ S∑k
j=1 N j+m − S∑k

j=1 N j
< −(t − a − y)].

Thus,

E{N̂k |Tk = t} = r(t − a)− r(t − a − y), (25.31)

so that

EN̂k =
∫ ∞

0
{r(t − a)− r(t − a − y)}Fk(dt), (25.32)

where Fk(t) = P(Tk ≤ t). The desired formula is obtained by summing over
k = 0, 1, 2, . . . , and using v(t) =∑∞

k=0 Fk(t). �
Proof of Part 2 of Blackwell’s Renewal Theorem 25.2. Assume an arithmetic distri-
bution with span h > 0. Using Proposition 25.6 one has the convolution formula

U [nh, (n + 1)h) =
∞∑

k=0

r̃(k − n)ṽ(k) =
∞∑

k=0

r̃(k)ṽ(k + n), (25.33)
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where r̃(k) = r(kh)− r((k − 1)h) and ṽ(k) = v(kh)− v((k − 1)h). Now,

∞∑

k=0

r̃(k) = lim
n→∞ r(n) = EN1 <∞. (25.34)

Also, limn→∞ ṽ(n) = h
EX1

, and limn→−∞ ṽ(n) = 0. It follows, therefore, that

lim
n→∞U [nh, (n + 1)h) = hEN1

EZ1
, (25.35)

and

lim
n→−∞U [nh, (n + 1)h) = 0. (25.36)

Now, Wald’s equation completes the proof. �
Proof of Part 1 of Blackwell’s Renewal Theorem 25.2. Making a change of variable
in Proposition 25.6, one has

U [a, a + y) =
∫ ∞

0
{r(t)− r(t − y)}va(dt), (25.37)

where va(·) = v(a + ·).
For M > 0, write

U [a, a + y) = I1(M, a, y)+ I2(M, a, y),

where

I1(M, a, y) =
∫ M

0
{r(t)− r(t − y)}va(dt),

and

I1(M, a, y) =
∫ ∞

M
{r(t)− r(t − y)}va(dt).

The previous theory in the non-negative, non-lattice case applies to the ladder
variables Zn, n ≥ 1, to yield for every y > 0,

lim
t→∞{V (t + y)− V (t)} = y

EZ1
.
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Using monotonicity of r(t), it follows that for fixed M, y,

lim
a→∞ I1(M, a, y) = lim

a→∞[
∫ M

0
r(t)va(dt)−

∫ M−y

0
r(t)va+y(dt)]

= 1

EZ1

∫ M

M−y
r(t)dt. (25.38)

Similarly, lima→−∞ I1(M, a, y) = 0. Next we show that for each fixed y > 0, one
has, uniformly in a,

lim
M→∞ I2(M, a, y) = 0. (25.39)

Now,

I2(M, a, y) =
∞∑

n=0

∫ M+(n+1)y

M+ny
{r(t)− r(t − y)}va(dt)

≤
∞∑

n=0

r1(M, n){v(a + M + (n + 1)y)− v(a + M + ny)},

where r1(M, n) = supM+ny<t<M+(n+1)y{r(t)−r(t− y)}. Again using the previous
theory for the non-negative, non-lattice case, one has

lim
b→∞{V (b + y)− V (b)} = y

EZ1
.

So, for each y, there is a constant cy such that for all M, a,

I2(M, a, y) ≤ cy

∞∑

n=0

r1(M, n).

Now,

∞∑

n=0

r1(M, 2n) ≤ EN1 − r(M),

and

∞∑

n=0

r1(M, 2n + 1) ≤ EN1 − r(M),

where r(M)→ EN1 as M →∞. Therefore, for all a, one has
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I2(M, a, y) = |U [a, a + y)− I1(M, a, y)| < ε(M, y), (25.40)

where ε(M, y)→ 0 as M →∞ for fixed y, as claimed.
To see that this is sufficient to complete the proof of the theorem, observe that

|U [a, a + y)− yEN1

EZ1
| ≤ ε(M, y)+ |I1(M, a, y)− 1

EZ1

∫ M

M−y
r(t)dt |

+| 1

EZ1

∫ M

M−y
r(t)dt − yEN1|. (25.41)

Thus,

lim sup
a→∞

|U [a, a + y)− yEN1

EZ1
|

≤ ε(M, y)+ | 1

EZ1

∫ M

M−y
r(t)dt − yEN1|. (25.42)

Now, first letting M →∞, one then obtains

lim
a→∞U [a, a + y) = yEN1

EZ1
.

Combining this with Wald’s theorem yields the theorem in the limit as a →∞. For
the limit a →−∞, one has for all a

U [a, a + y) ≤ ε(M, y)+ |I1(M, a, y)|,

so that

lim sup
a→−∞

U [a, a + y) ≤ ε(M, y).

Thus, letting M → ∞, one has lima→−∞U [a, a + y) = 0, as asserted. This
completes the proof of Theorem 25.2 in the non-lattice case Part 1. �

We can now consider an application to a more specialized context of renewal
equations mentioned at the outset.

Corollary 25.7 (Key Renewal Theorem: Lattice Case). Assume that
∑∞

k=0 g(k)
converges for the renewal equation

u(k) = g(k)+
k∑

j=0

u(k − j)q( j), k ≥ 0, u(k) = 0, k < 0,
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where q is an arithmetic probability distribution on the integers with lattice span h,
and mean μ. Then for each k = 0, 1, 2 . . . ,

lim
n→∞ u(nh + k) = h

μ

∞∑

j=0

g( jh + k).

Proof. For simplicity take h = 1, k = 0. The general case is left to Exercise 1. In
view of Proposition 25.1, one has

u(n) =
n∑

j=0

g(n − j)U ({ j})) =
n∑

j=0

g( j)U ({n − j})), n = 0, 1, . . . , (25.43)

where U ({m}) = ∑∞
n=0 Q∗n({m}),m = 0, 1, . . . . Using the renewal theorem for

U , it follows that for each fixed j , g( j)U ({n− j})→ g( j)/μ as n →∞. Moreover,
|g( j)|U ({n − j}) ≤ |g( j)|, for each j and

∑∞
j=0 |g( j)| <∞. Thus the dominated

convergence theorem can be applied to the sum on the right side of (25.43) to
complete the proof. �

We now prove the key renewal theorem for the non-lattice case under a broad
condition,6 which is needed for an important application in Chapter 26 on ruin

problems in insurance. First, a definition is required.

Definition 25.2. For a given function g : [0,∞)→ R, and δ0 > 0,let

mn = inf{g(x) : (n − 1)δ ≤ x ≤ nδ}, Mn = sup{g(x) : (n − 1)δ ≤ x ≤ nδ}

for n = 1, 2, . . . , 0 < δ ≤ δ0. The function g is said to be directly Riemann
integrable if, for all 0 < δ ≤ δ0, (a) �(δ) = δ

∑
n mn , and L(δ) = δ

∑
n Mn

converge absolutely, and (b) L(δ)− �(δ)→ 0 as δ→ 0.

Here are five examples of directly Riemann integrable functions which are easy
to check (Exercise 2): (1) A continuous function which vanishes outside a finite
interval. (2) An indicator function of a finite interval. (3) If F is a distribution
function on [0,∞) with finite mean, then F(x) = 1 − F(x) is directly Riemann
integrable. (4) If g is directly Riemann integrable on [0,∞), then so is x → g(cx)
for any c > 0. (5) A non-increasing integrable function on [0,∞).

Corollary 25.8 (Key Renewal Theorem: Non-lattice Case). Consider the renewal
equation (25.1), where g is a directly Riemann integrable function on [0,∞) and Q
is a non-lattice probability on [0,∞) with finite mean μ. Then the solution u of the
renewal equation (25.1), satisfies

6The condition of direct Riemann integrability is due to Feller (1971), Chapter XI. Also see
Ramasubramanian (2009), Chapter 3.
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lim
x→∞ u(x) = (1/μ)

∫

[0,∞)

g(x)dx . (25.44)

Proof. Assume without loss of generality that g is nonnegative (See Exercise 3).
Let m and M be lower and upper approximations of g given by m(x) = mn for
(n − 1)δ ≤ x < nδ, and M(x) = Mn for (n − 1)δ ≤ x < nδ(n = 1, 2, . . . ). Then
for each x > 0, writing U (x) for U [0, x) for convenience,

∫

[0,x]
m(x−y)U (dy) ≤

∫

[0,x]
g(x−y)U (dy) ≤

∫

[0,x]
M(x−y)U (dy). (25.45)

By a change of variables y → x − y, one has

∫

[0,x]
m(x − y)U (dy) =

∑

n≥1

mn[U (x − nδ)−U (x − (n − 1)δ)]. (25.46)

Here it may be noted that U (y) = 0 if y < 0. Since m is integrable and, for all
n, U (x − nδ)−U (x − (n− 1)δ) ≤ C = C(δ) for some constant C . By Blackwell’s
renewal theorem, one may use Lebesgue’s dominated convergence theorem to get

lim
x→∞

∫

[0,x]
m(x − y)U (dy) = lim

x→∞
∑

n≥1

mn[U (x − (n − 1)δ)−U (x − nδ)]

= (1/μ)
∑

n≥1

mnδ. (25.47)

Similarly,

lim
x→∞

∫

[0,x]
M(x − y)U (dy) = (1/μ)

∑

n≥1

Mnδ. (25.48)

The last two sums are lower and upper Riemann sums for
∫
[0,∞)

g(x)dx . As δ ↓ 0
these sums converge to the same limit by condition (b) in Definition 25.2. Hence the
limit, as x →∞, of the middle expression in (25.45) equals

∫
[0,∞)

g(x)dx/μ. �
Here is another example which will be useful in Chapter 26 on ruin problems in

insurance.

Lemma 9. Let f1, f2 : [0,∞) → (0,∞) with f1 non-decreasing and f2 non-
increasing such that f1 f2 is integrable, and limδ→0 c(δ) = 1, where c(δ) =
sup{ f1(x + y)/ f1(x) : x ≥ 0, 0 ≤ y ≤ δ}. Then g = f1 f2 is directly Riemann
integrable.

Proof. Using the notation in Definition 25.2, we have Mn = sup{g(x) : (n − 1)δ ≤
x ≤ nδ} ≤ f1(nδ) f2((n−1)δ) ≤ c(2δ) f1((n−2)δ) f2((n−1)δ)) for n = 2, 3, . . . .
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Note that c(2δ) ≥ f1((n − 2)δ + 2δ))/ f1((n − 2)δ)). Also, f1((n − 2)δ) f2((n −
1)δ)) ≤ f1(x) f2(x) for all x such that (n − 2)δ ≤ x ≤ (n − 1)δ, n ≥ 2. Thus the
upper approximation of the integral of g satisfies

L(δ) = δ
∑

n

Mn ≤ δM1 + δ
∑

n≥2

Mn

≤ δ sup{g(x) : 0 ≤ x ≤ δ} + c(2δ)
∫

[0,∞)

g(x)dx . (25.49)

It follows from the inequality involving c(2δ) in the first sentence of the proof that
for all n ≥ 1,

mn = inf{g(x) : (n − 1)δ ≤ x ≤ nδ}
≥ f1((n − 1)δ) f2(nδ)

≥ (1/c(2δ)) f1(n + 1)δ) f2(nδ). (25.50)

Since f((n + 1)δ) f2(nδ) ≥ f1(x) f2(x) for nδ ≤ x ≤ (n + 1)δ, it follows that

�(δ) = δ
∑

n

mn ≥ (1/c(2δ)))
∫

[0,∞)

g(x)dx . (25.51)

Letting δ→ 0, it follows that g is directly Riemann integrable. �
Other aspects of renewal theory can be formulated in terms of the renewal

counting process as follows (also see Exercise 5).

Theorem 25.9 (Elementary Renewal Theorem). Let N (t) = sup{n : Sn ≤ t}. Then
(i) EN (t)/t → 1

μ
as t →∞.

Proof. Apply Wald’s formula (Proposition 25.5) to the inequality t < SN (t)+1 to
get lim inft→∞ EN (t)/t ≥ 1

μ
. For the reverse inequality apply Wald’s formula to

the truncated inter-renewals X̃ j = X j ∧ a, to obtain t ≥ ET̃Ñ (t) = ET̃Ñ (t)+1 −
EX̃ Ñ (t)+1 = μ̃(EÑ (t) + 1) − EX̃ Ñ (t)+1. Use EÑ (t) ≥ EN (t) and X̃ ≤ a to get

EN (t)/t ≤ 1
μ̃
+ a−μ̃

μ̃t . Finally, compute the limsup as t →∞, followed by monotone
convergence theorem applied to μ̃ = EX1 ∧ a as a →∞ to complete the proof. �

Applications of the renewal theorem to problems in risk theory are provided in
Chapter 26. Existence of the so-called derivative martingale associated with random
cascades and branching random walks introduced in Chapter 21 provide another
important area of application for Blackwell’s notion of ladder random variables.
The following example provides an illustrative application of the renewal theorem
to a problem outside of probability theory; see Exercise 10 for another.
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Example 3 (Self-Similar Fractals). An interesting application7 of the renewal the-
orem involves the computation of various notions of fractal dimensions associated
with self-similar compact sets, such as the Cantor set, that arise as limit points of
iterated similarity contraction mappings. A similarity contraction map S : Rk → R

k

is function of the form S = rT , where T : Rk → R
k is an isometry and r ∈ (0, 1) a

fixed parameter. We consider compact sets K that can be represented as follows. Let
S1, . . . , Sm be a given family of similarity contractions with respective parameters
r1, . . . , rm . Also let C(m) = {1, . . . ,m}∞. Then8

Lemma 10 (Hutchinson). For j ≡ ( j1, j2, . . . ) ∈ {1, 2, . . . ,m}∞, x ∈ R
k ,

limn→∞ S j1 · · · S jn x exists and does not depend on x . Moreover

K = ∪j≡( j1, j2,... )∈C(m){ lim
n→∞ S j1 · · · S jn x : x ∈ R

k}

is a compact subset of R
k , and K is the unique compact set with the similarity

invariance property: K = S1 K ∪ S2 K ∪ · · · ∪ Sm K .

Proof. For existence of K one may use a contraction mapping argument as follows.
Since S1, . . . , Sm, are contraction maps and R

k is a complete metric space, each
S j1... jm has a unique fixed point, say s j1... jm . Let us show that for any j ∈ C(m),
limn→∞ s j1... jn := sj exists, and K = {sj : j ∈ C(m)} is a compact invariant
set. Let λ = max1≤i, j≤m ||si − s j ||, and R = λ/(1 − r), where r = max{ri :
1 ≤ i ≤ m}. Let B(x, d) denote the closed ball of radius d centered at x . Then
∪m

i=1 B(si , r R) ⊂ ∩m
j=1 B(s j , R) := C , say, since for ||si − x || ≤ r R, one has

||s j − x || ≤ λ+ r R = λ+ rλ/(1− r) = R. Note that if x ∈ C , then ||Si x − si || =
||Si x − Ssi || ≤ r ||x − si || < ||x − si || < R, so that Si C ⊂ C, 1 ≤ i ≤ m,
and hence C ⊃ S j1C ⊃ S j1 j2C ⊃ · · · ⊃ S j1... jn C ⊃ · · · . That is, writing C j1 =
S j1C, . . . ,C j1 j2··· jn C , one has C ⊃ C j1 ⊃ · · · ⊃ C j1... jn . . . . But the fixed point
s j1... jn ∈ S j1... jn C , and diam(S j1... jn C)→ 0 as n →∞, and each S j1... jn C is closed.
Thus limn→∞ s j1... jn = sjk, say, exists. Now note that if x ∈ R

k, ג ∈ C(m), then
||S j1··· jn x − s j1 j2··· jn || = ||S j1··· jn x − S j1··· jn s j1 j2··· jn || ≤ ||x − s j1··· jn || → 0, and
s j1··· jn → sj as n → ∞. Thus the set K in the lemma equals {sj : j ∈ C(m)}.
Letting K = {sj : j ∈ C(m)}, Si (sj) = sij, since Si (sj) ∈ Si (∩∞n=1C j1... jn ) =
∩∞n=1Ci j1... jn = {sij}. Thus K = ∪m

i=1Si K is invariant.
It remains to prove that K is compact. For this give C(m) = {1, . . . ,m}∞ the

product topology for the discrete topology on the factor spaces {1, . . . ,m}. Then
C(m) is compact. Define π : C(m)→ K by π(j) = sj, j ∈ C(m). Since diam(K )

is bounded (K being a subset of C) it follows that π is continuous and hence that K
is compact.

To prove uniqueness, suppose K is a compact set such that K = S1 K ∪ S2 K ∪
· · · ∪ Sm K . Let S j1... jn = S j1 ◦ · · · ◦ S jn , and K j1... jn = S j1... jn K . With this notation
one has,

7Lalley (1988).
8Hutchinson (1981).
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K = ∪m
i=1Si K = ∪m

i, j=1Si (S j K ) = ∪m
i, j=1Si j K = ∪m

i, j=1 Ki j . (25.52)

Iterating by induction it follows that

K = ∪ j1,..., jn K j1... jn .

Similarly, writing K = ∪m
jn+1=1S jn+1 K in the next iteration,

K j1... jn = ∪m
jn+1=1 K j1... jn jn+1 .

Thus, K ⊃ K j1 ⊃ K j1 j2 ⊃ · · · ⊃ K j1 j2... jn ⊃ · · · . Now, by compactness,
limn→∞ diam(K j1... jn ) = 0, so the set ∩∞n=1 K j1... jn is a singleton by completeness
of Rk , say {k j1 j2...}. �

Note that uniqueness fails among all similarity invariant sets since R
k is clearly

invariant. Taking k = 1,m = 2 and S1x = r x, S2x = r x + (1 − r) = r(x +
1−r

r ), x ∈ R, one obtains generalized Cantor sets K , with 0 < r < 1/2; the case
r = 1/3 coincides with the definition of the Cantor set by removal of middle-thirds.
The cases 1/2 ≤ r < 1, yield K = [0, 1]. In any case, K1, K2 are, compact
pairwise disjoint sets. The similarity dimension of K is the unique solution d > 0
to rd

1 + rd
2 = 1, i.e., 2rd = 1, d = − ln 2/ ln r . For ε > 0, a finite subset F ⊂ K is

said to be ε-separated if |x − y| ≥ ε for all x, y ∈ F, x �= y. The packing function
of K is defined by

N (ε) = max{|F | : F ⊂ K is ε − separated}.

Proposition 25.10. 9 For each β ∈ [0,− ln r) there is a constant cβ , uniformly
bounded in β, such that as n →∞,

N (en ln r+β) ∼ cβed(n ln r+β) = cβ2−(n+
β

ln r ),

where d = − ln 2/ ln r , for 0 < r ≤ 1/2.

Proof. That the similarity dimension d = − ln 2/ ln r > 0 follows from the equation
2rd = 1. By compactness of K1, K2, there is a δ > 0 such that |x1−x2| > δfor x1 ∈

9This example was selected for its simplicity, but is part of more involved applications of renewal
theory developed by Lalley (1988) that also permits examples in which the images Ki , 1 ≤ i ≤ m
are not disjoint sets.
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K1, x2 ∈ K2. Since K1, K2 are scaling-similar to K , a maximal ε-separated subset
of Ki scales to a maximal εr−1-separated subset of K . In particular, a maximal ε-
separated subset of Ki has cardinality N (ε/r). Since K1 ∩ K2 = ∅, one has for all
0 < ε < δ,

N (ε) = 2N (ε/r).

More generally, for all ε > 0, let

N (ε) = 2N (ε/r)+ L(ε), (25.53)

where, since ε → N (ε) is a non-increasing integer valued function tending to
one for large ε, L(ε) = N (ε) − 2N (ε/r) is a piecewise constant function with
finitely many discontinuities. Moreover L(ε) = 0 for 0 < ε < δ. Define
u(x) = e−dx N (e−x ), x > 0. Then, writing ε = e−x , multiplying (25.53) by e−dx ,
writing 1

r = e− ln r and using 2rd = 1, one has

u(x) = u(x + ln r)+ e−dx L(e−x ), x > 0. (25.54)

u(x) = g(x)+
∫ x

0
u(x − y)Q(dy), x > 0, (25.55)

where Q(dy) = δ− ln r (dy) has mean μ = − ln r , and g(x) = e−dx L(e−x ) is
piecewise continuous with finitely many discontinuities, and compact support in
[0,∞) since L(x) = 0, x ∈ (0, δ). In particular, g is directly Riemann integrable.
Using a key renewal theorem, or more explicitly as in Example 1 with 0 ≤ β < h =
− ln r ,

u(nh − β) =
[n− β

h ]∑

j=0

g((n − j)h − β) =
n∑

k=0

g(kh − β)

→ cβ :=
∞∑

k=0

g(kh − β). (25.56)

For uniform boundedness cβ ≤ edhc0 note g(kh − β) ≤ edkhedh L(e−kh). �
The Exercise 7 provides a similar illustration for a well-known fractal set K .
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Exercises

1. Extend the key renewal theorem to the case of an arithmetic distribution with
span h > 1, and for k ≥ 1, and mean μ > 0 by showing that u(nh + k) →
h
μ

∑∞
j=0 g( jh + k) as n →∞.

2. Check that the five examples following Definition 25.2 are indeed directly
Riemann integrable.

3. Show that it is sufficient to prove Corollary 25.8 for non-negative directly
Riemann integrable g on [0,∞).

4. (Waiting Time or Inspection Paradox) The waiting time paradox, or inspection
paradox, refers to the counterintuitive experience of longer average waits for
arrivals relative to arbitrarily fixed times; e.g., arrivals of busses at a designated
stop. Assume non-lattice renewal times with a positive density f and finite
second moment. EY 2

1 = σ 2 + μ2 <∞, μ = EY1.

(a) Show that the residual life process R(t) = SN (t)+1, t ≥ 0, is a Markov
process with unique invariant probability π having the complementary
distribution for f as pdf π(dt) = 1

μ
(
∫∞

t f (s))dt ≡ 1
μ

Fc(t))dt, t > 0.

(b) Show that in steady state (a) ER(t) = 1
2 (

σ 2

μ2 + 1)μ, where σ 2

μ2 is the squared

coefficient of variation10 of Y1, and
(c) ER(t) > μ if and only if σ 2

μ2 > 1.

5. Assume EX1 = μ ∈ (0,∞). For the renewal counting process N (t) = sup{n :
Sn ≤ t}, show that N (t)

t → 1
μ

as t →∞. [Hint: SN (t) ≤ t < SN (t)+1.]
6. Show that ϕn → D(y) in probability as n → ∞ and ψn → d(y) in probability

as n →∞. [Hint: Use Chebyshev arguments along the following lines: Suppose
ϕn �= D(y), then there is an ε > 0, such that 0 < lim supn→∞ P(D(y) − ϕn >

ε) ≤ lim supn→∞ E(D(y)− ϕn)/ε ≤ 1
ε
(D(y)− lim infn→∞ Eϕn) ≤ 0.]

7. (Sierpinski gasket) Take k = 2 and m = 3 in Example 3. The Sierpinski gasket is
the compact similarity invariant set K ⊂ R

2 defined by the similarity contraction
maps S1(x1, x2) = ( x1

2 ,
x2
2 ), S2(x1, x2) = ( 1

2 + x1
2 ,

x2
2 ), and S3(x1, x2) = ( 1

4 +
x1
2 ,

√
3

4 + x2
2 ), for (x1, x2) ∈ R

2. For a geometric realization, iterate the following
algorithm for each sub-triangle generated and not removed: Starting with a single
solid equilateral triangle, subdivide into four congruent equilateral sub-triangles
and remove the middle open triangle, i.e., K is the limit set. Use the renewal
theorem to compute limn→∞ endh N (e−nh+β) where the lattice span h = ln 2,
β ∈ (0, h), and d > 0 is the packing dimension.

10The precise form of the mean residual time differs a bit for renewal times having a density from
integer renewal times, see Chapter 8, Exercise 12.



Chapter 26
Special Topic: Ruin Problems in
Insurance

The ruin problem of insurance is another catalyst for many interesting meth-
ods in the historic development of probability. The basic question asks how
the probability of eventual ruin of a company depends on the initial capital of
the company. In standard models, one seeks to provide an answer in terms of
the premium rate and the distribution of claims, be they relatively moderate
or possibly catastrophically large. In the latter case, martingale theory proves
useful. The first task for the asymptotic analysis of ruin probabilities is
therefore to precisely delineate the roles of light- and heavy-tailed claim size
distributions. Martingale theory proves useful for this analysis, especially for
the light-tailed case. For the general analysis of ruin in the renewal model,
also known as the Sparre–Andersen model, Blackwell’s ingenious notion of
ladder heights and epochs, together with his deep general renewal theorem,
plays essential roles.

Throughout this chapter, we will identify a distribution function F on the real line R
with its corresponding Lebesgue–Stieltjes measure F on the Borel σ -field of R. That
is, the same notation will be used interchangeably as a function and a measure.1

Lemma 1. Let F be the distribution function of a random variable X > 0, which is
not bounded. That is, F(0) = 0, F(x) < 1,∀x ∈ (0,∞). Write G(x) = 1 − G(x)
for a distribution function G on [0,∞). Then lim infx→∞ F ∗ F(x)/F(x) ≥ 2.

Proof. Let X1, X2 be independent with common distribution F . Then P(X1+X2 >

x) ≥ P([X1 > x] ∪ [X2 > x]) = P(X1 > x)+ P(X2 > x)− P(X1 > x)P(X2 >

1See BCPT, p. 228, for Lebesgue–Stieltjes measure.
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x) = 2P(X1 > x) − P2(X1 > x). Now divide the relations by P(X1 > x), and
take the liminf as x →∞. �

It is intuitively clear that the faster the tail probability of F decays, the larger
is the left side in the above lemma. It is easy to check, for example, that if the
tail decays exponentially, then one has F ∗ F(x)/F(x) → ∞ as x → ∞. This
motivates the following definition.

Definition 26.1. A distribution (function) F on R, or a real-valued random variable
X with distribution function F , is said to be light-tailed if for some θ > 0,
E exp(h X) < ∞ for all h ∈ (−θ, θ), and F is heavy-tailed otherwise. If F is
the distribution of a positive random variable, F(0) = 0, F(x) < 1∀x > 0, then F
is subexponential if

lim
x→∞ F ∗ F(x)/F(x) = 2. (26.1)

The class of all subexponential distributions is denoted by S .

Definition 26.2. A positive measurable function L on (0,∞) is said to be slowly
varying at infinity if

lim
x→∞

L(cx)

L(x)
= 1, ∀c > 0.

A non-negative function f is said to be regularly varying with index δ ≥ 0 if it is of
the form f (x) = xδL(x), where L is slowly varying at infinity.

Proposition 26.1 (Karamata Representation2). A positive measurable function L
on (0,∞) is slowly varying at infinity if and only if from some x0 > 0, it can be
represented as

L(x) = d(x) exp{
∫ x

x0

1

t
g(t)dt},

where g and d are measurable, g(t)→ 0 as t →∞, and 0 < d ≡ limx→∞ d(x) <
∞.

Remark 26.1. In view of Lemma 1, it now follows that (26.1) is equivalent to the
seemingly stronger property lim supx→∞[F ∗ F(x)/F(x)] = 2.

Lemma 2. Suppose the distribution F of X is subexponential. Then (a) uniformly
∀y > 0 lying on a bounded set,

lim
x→∞ F(x − y)/F(x) = 1. (26.2)

2For a proof, see Ramasubramanian (2009), pp. 73–76.
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(b) The function L(z) = F(ln z) is slowly varying at infinity. (c) F is heavy-tailed.

Proof. (a) One has F ∗ F(x) = 1 − F∗2(x) = 1 − ∫
[0,x] F(x − t)F(dt) =

1 − ∫
[0,x][1 − F(x − t)]F(dt) = F(x) + ∫

[0,x] F(x − t)F(dt), so that, for 0 ≤
y ≤ x , noting that F is a decreasing function, F ∗ F(x)/F(x) = 1 + ∫

[0,x] F(x −
t)/F(x)F(dt) = 1 + ∫

[0,y] F(x − t)/F(x)F(dt) + ∫
[y,x] F(x − t)/F(x)F(dt) ≥

1+F(y)+[F(x−y)/F(x)](F(x)−F(y)]. Let y > 0 be fixed. Then letting x →∞
on both sides, one obtains 2 ≥ 1+F(y)+ lim supx→∞{F(x− y)/F(x)}{1−F(y)},
or lim supx→∞[F(x− y)/F(x)] ≤ 1. But, obviously, lim infx→∞ F(x− y)/F(x) ≥
1. The uniformity of the inequalities for y in a bounded set is also immediate. Next
consider (b). For 0 < a < 1, write y = − ln(a), w = az, c = 1/a. Then, for
0 < a < 1, as z →∞,

L(az)/L(z) = F(ln z − y)/F(ln z)→ 1, (26.3)

and, for c > 1, as w→∞,

L(cw)/L(w)(= L(z)/L(az))→ 1, (26.4)

establishing the slowly varying property of L . Finally consider (c ). It follows from
(b), writing Z = exp{X}, that for every h > 0,

E exp{h X} = EZh

≥ E(Zh1[Z>z])

≥ zh P(Z > z) = zh L(z)→∞,

(26.5)

as z → ∞, by a well-known property of slowly varying functions (see Exer-
cise 1(b)). �

The following is an important characterization of subexponentiality of F .

Proposition 26.2. F ∈ S if and only if

lim
x→∞ F∗n(x)/F(x) = n ∀ n = 2, 3, . . . (26.6)

The proof of this proposition follows from induction and the following useful
lemma.3

3We follow Ramasubramanian (2009), pp. 87–89, 92–98, for several results that follow.
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Lemma 3. Suppose F ∈ S and G is a distribution on (0,∞). If, for 0 < a <∞,

lim
x→∞G(x)/F(x) = a, (26.7)

then

lim
x→∞ F ∗ G(x)/F(x) = 1+ a. (26.8)

Proof. From the first few lines of the proof of Lemma 2 (a), one gets

F ∗ G(x)/F(x) = 1+ (1/F(x))
∫

[0,x]
G(x − y)F(dy). (26.9)

Therefore, one needs to prove

lim
x→∞(1/F(x))

∫

(0,x]
G(x − y)F(dy) = a. (26.10)

Given ε > 0, let x̃ ≡ x̃(ε) be such that G(u) ≤ (a + ε)F(u) ∀ u ≥ x̃ . This is
possible due to (26.7). Then for x > x̃ ,

(1/F(x))
∫

[0,x]
G(x − y)F(dy)

= (1/F(x))
∫

(0,x−x̃]
G(x − y)F(dy)+ (1/F(x))

∫

[x−x̃,x]
G(x − y)F(dy)

≤ (a + ε)

∫

(0,x−x̃]
(1/F(x))F(x − y)F(dy)+ (1/F(x))[F(x)− F(x − x̃)]

≤ (a + ε)

∫

[0,x]
(1/F(x))F(x − y)F(dy)

+(1/F(x))[F(x − x̃)− F(x)]. (26.11)

Again, from the proof of Lemma 2, the last integral equals F ∗ F(x)/F(x) − 1,
which converges to 1 since F ∈ S . Also, the second term in (26.11) converges to
zero as x →∞, by Lemma 2. Hence

lim sup
x→∞

(1/F(x))
∫

[0,x]
G(x − y)F(dy) ≤ (a + ε). (26.12)

Next let x ′ be such that, given ε > 0, G(u) ≥ (a − ε)F(u)∀u ≥ x . Then for x > x ′
(see (26.11)),

(1/F(x))
∫

[0,x]
G(x − y)F(dy) ≥ (a − ε)

1

F(x)

∫

(0,x−x ′]
F(x − y)F(dy) ≥ (a − ε)F(x − x ′),

(26.13)
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using the fact that (1/F(x))F(x − y) ≥ 1 for y ≥ 0. Thus

lim inf
x→∞ (1/F(x))

∫

(0,x]
G(x − y)F(dy) ≥ a. (26.14)

Now (26.10) follows from (26.12) and (26.14). �
There is an alternative, but equivalent, definition of subexponentiality that is

probably more intuitively appealing, as stated below.

Proposition 26.3. Let F be a distribution function on (0,∞).

F ∈ S ⇐⇒ P(Sn > x) = P(Mn > x)(1+ o(1)) as x →∞,∀n = 2, 3, . . . ,
(26.15)

where Sn = X1 + · · · + Xn , and Mn = max{X1, . . . , Xn}, with Xn, n ≥ 1, an i.i.d.
sequence with common distribution F .

Proof. To see this note that for every n = 2, 3, . . . , P(Sn > x) = F∗n(x), and

P(Mn > x) = P(∪n
j=1[X j > x])

= nF(x)− (1/2)n(n − 1)(F
2
(x))+ · · · + (−1)n+1 F

n
(x)

= nF(x)(1+ o(1)) as x →∞. (26.16)

Hence

F∗n(x)/F(x) = nF∗n(x)/nF(x) = n{P(Sn > x)/P(Mn > x)}(1+ o(1))→ n

as x →∞. By Proposition 26.2, F ∈ S the converse is obtained by reversing these
equalities. �

The following result is extremely useful in proving integrability and interchange
of summation and limits in a host of problems involving subexponential distribu-
tions.

Lemma 4 (Kesten’s Lemma). If F ∈ S , then for every ε > 0, there exists a constant
K , 0 < K <∞, depending on ε, such that

F∗n(x)/F(x) ≤ K (1+ ε)n,∀x > 0,∀n = 2, 3, . . . (26.17)

Proof. Let X1, X2, . . . be an i.i.d. sequence with a common distribution function
F . For Sn =∑n

j=1 X j , x0 > 0, n ≥ 1, let

αn = sup
x>x0

F∗n(x)

F(x)
.
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Using subexponentiality, for any ε > 0, one may choose x0 such that for x > x0,

P(S2 > x, X2 ≤ x) = F∗2(x)− F(x) ≤ (1+ ε

2
)F(x).

Using the definitions of αn and x0, one has, for x > x0,

P(Sn > x, Xn ≤ x − x0) =
∫ x−x0

0
P(Sn−1 > x − y)F(dy)

≤ αn−1

∫ x−x0

0
F(x − y)F(dy)

= αn−1 P(S2 > x, X2 ≤ x − x0)

≤ αn−1(1+ ε

2
)F(x). (26.18)

In addition,

P(Sn > x, Xn > x − x0) ≤ F(x − x0) ≤ cF(x), (26.19)

for some c > 0. Here, using Lemma 2(a),

c = sup
x

F(x − x0)

F(x)
<∞. (26.20)

In view of (26.18) and (26.19), one has

αn ≤ αn−1(1+ ε

2
)+ c, n = 2, 3, . . .

Thus, by induction, one has

αn ≤ α1(1+ ε

2
)n−1 + c

n−2∑

j=0

(1+ ε

2
) j ≤ α1(1+ ε

2
)n−1 + c[(1+ ε/2)n−1 − 1]/ε/2,

so that by definition of αn , there exists a constant K1 such that

sup
x>x0

F∗n(x)

F(x)
≤ K1(1+ ε

2
)n−1 ≤ K1(1+ ε)n .
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Also, since F(x) is decreasing on [0, x0] from F(0) = 1, taking K2 = 1
F(x0)

, one

has

sup
x≤x0

F∗n(x)

F(x)
≤ K2 ≤ K2(1+ ε)n .

The assertion follows by taking K = K1 ∨ K2. �
Definition 26.3. Given a distribution F on (0,∞) with a finite mean μ, the
integrated tail distribution FI is defined to be the distribution on (0,∞) having
the density

f I (x) = (1/μ)F(x), 0 < x <∞. (26.21)

The class of all distributions F such that FI ∈ S is denoted by SI .

Recall that, using Fubini’s theorem, one may check that
∫
[0,∞)

F(t)dt = μ, so
that (26.21) defines a probability density on (0,∞).

Remark 26.2. The precise asymptotic rate of the ruin probability is known gener-
ally only for claim size distributions F such that F ∈ SI , i.e., for F satisfying

lim
x→∞[FI ∗ FI (x)/FI (x)] = 2. (26.22)

A sufficient condition for this is the following4:

lim
x→∞

∫

(0,x]
[F(x − y)/F(x)]F(y)dy = 2μ. (26.23)

Definition 26.4. The class of all F on (0,∞) with a finite mean μ and satisfy-
ing (26.23) is denoted by S∗.
Lemma 5. If F ∈ S∗, then F ∈ S and and F ∈ SI (i.e., F ∈ S and FI ∈ S).5

Definition 26.5. Let F be an absolutely continuous distribution on (0,∞) with
density f . The hazard function q is defined by q(x) = f (x)/

∫
(x,∞)

f (t)dt (0 <

x < ∞) = f (x)/F(x). One says that q is eventually decreasing if q is decreasing
on (a,∞) for some a > 0.

Note that q(x) is the density at x of the conditional distribution (of a random
variable X with distribution F), given the event [X > x]. The following result is
often useful in checking if F ∈ S∗.

4See Ramasubramanian (2009), pp. 92, 93
5The proof may be found in Ramasubramanian (2009), pp. 96–98.
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Lemma 6. Let F be absolutely continuous on (0,∞) with hazard function q. (a) If
limx→∞ xq(x) <∞, then F ∈ S∗. (b) If (i) q is eventually decreasing to zero and
(ii)

∫
(0,∞)

exp{xq(x)}F(x)dx <∞, then F ∈ S∗.6

The following are simple examples of F belonging to the various classes introduced
above. One can check the assertions by direct computation and/or using Lemma 6.

Example 1. Let F be exponential with density f (x) = λ exp{−λx}1(0,∞)(x). Then
F is light-tailed.

Example 2. Let F have density f (x) = cxδ exp{−αxβ}1(0,∞)(x) for some α > 0,
β > 0, and δ ≥ 0. (a) If β ≥ 1, then F is light-tailed. (b) If 0 < β < 1, then F ∈ S∗
(and, therefore, F ∈ S and F ∈ SI ).

Example 3. If F has the density f (x) = δ(x2 ln2 x)−11(c,∞)(x) for some δ > 0
and c > 1, then F ∈ S∗.
Example 4. If F has the density f (x) = δ(x ln2 x)−11(c,∞)(x) for some δ > 0
and c > 1, then the mean of F is infinite, so that F is heavy-tailed and does not
belong to SI .

Let us now consider the Sparre–Andersen model of insurance. In this model, also
known as the general renewal model, claims of (strictly positive) sizes X1, X2, . . .

arrive at random times T1 ≤ T2 ≤ · · · , and a constant premium c > 0 per unit
time is collected. The sequences {Xn : n ≥ 1} and {Tn : n ≥ 1} are assumed to
be independent. It is also assumed that the inter-arrival times Ai = Ti − Ti−1(i =
1, 2, . . . ) are i.i.d., with T0 = 0, and EAi = μ < ∞. For an insurance company
with an initial capital u > 0, the probability of ruin is defined by

ψ(u) = P(
n∑

i=1

Xi > u +
n∑

i=1

cAi , for some n)

= P(
n∑

i=1

Zi > u for some n). (26.24)

Here we use the notation Zi = Xi − cAi . The common distribution of the i.i.d.
sequence {Zi : i ≥ 1} is assumed to satisfy the Net Profit Condition (NPC) defined
by

(NPC) EZi < 0. (26.25)

Note that if EZi is finite, and EZi ≥ 0, then by the strong law of large numbers,
ψ(u) = 1 for all u > 0. To avoid the trivial case ψ(u) = 0∀u > 0, also assume

P(Zi > 0) > 0. (26.26)

6The proof may be found in Ramasubramanian (2009), pp. 99–100.
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A special case of the Sparre–Andersen model, in the case that the inter-arrival
times Ai , i ≥ 1, are i.i.d. exponential, is called the Cramér–Lundberg model . Both
cases were considered in Chapter 11. The light-tail case is defined by assuming that
the claim size distribution is light-tailed,

E exp{q Xi } <∞ for some q > 0. (26.27)

This implies that there exists h, 0 < h ≤ ∞ such that

1 ≤ m(q) := E exp{q Zi } <∞ for 0 ≤ q < h, lim
q→h

m(q) = ∞. (26.28)

Let us recall that under these assumptions for the general Sparre–Andersen model,
it follows from martingale theory that one has the following Lundberg bound, see
Proposition 11.8. There exists a unique q = R > 0 such that

m(q) = 1, (26.29)

and

ψ(u) ≤ exp{−Ru}, u > 0. (26.30)

The parameter R is often referred to as the Lundberg constant. It will be seen from
the derivation of the precise asymptotics of the ruin probability that the exponential
rate provided by (26.30) cannot in general be improved upon. The true asymptotic
rate will be shown to be given by ψ(u) ∼ d exp{−Ru} for some constant d ≤ 1,
where R is the Lundberg constant; here, ∼ denotes that the ratio of its two sides
converges to 1 as u →∞ (see Remark 26.4).

The following provides a basic result for the Cramér–Lundberg model.

Theorem 26.4 (Pollaczek–Khinchine Formula). Consider the Cramér–Lundberg
model where A1 is exponential with parameter λ, i.e., mean 1/λ. Assume the NPC
condition (26.25) and the condition (26.26). Then (a) one has the following renewal
equation type relation satisfied by the survival probability φ(u) = 1−ψ(u), namely,

φ(u) = ρ/(1+ ρ)+ 1/(1+ ρ)

∫

(0,u]
φ(u − x)FX,I (dx), (26.31)

and (b) its unique bounded solution is given by

φ(u) = ρ/(1− ρ)

∞∑

n=0

(1+ ρ)−n F∗n
X,I (u), (26.32)

ψ(u) = (ρ/(1+ ρ))

∞∑

n=0

(1+ ρ)−n F∗n
X,I (u). (26.33)
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Here ρ = c/(λμ)− 1, and μ = EX1.

Proof. Note that part (b) follows mimicking the proof of Proposition 25.1, Chap-
ter 25, although FX,I /(1 + ρ) is a defective probability measure. So we need to
prove (26.31). Let S0 = 0, Sn = Z1 + · · · + Zn(n ≥ 1). Then

φ(u) = P(Sn ≤ u for all n ≥ 1)

= P(Z1 ≤ u, Sn − Z1 ≤ u − Z1 for all n ≥ 2)

= E(φ(u − Z1)1[Z1≤u]
= E(φ(u − X1 + cA1)1[X1−cA1≤u])

=
∫

(0,∞)

(

∫

[0,ca+u]
φ(u − x + ca)FX (dx))λ exp{−λa}da

=
∫

[u,∞)

(

∫

[0,y]
φ(y − x)FX (dx))(λ/c) exp{−λ(y − u)/c}dy

= (λ/c) exp{λu/c}
∫

[u,∞)

exp{−λy/c}(
∫

[0,y]
φ(y − x)FX (dx))dy.

Differentiating with respect to u, this yields

φ′(u) = (λ/c)φ(u)− (λ/c)
∫

[0,u]
φ(u − x)FX (dx)

= (λ/c)φ(u)− (λ/c){FX (u)φ(0)+
∫

[0,u]
φ′(u − x)FX (x)dx},

on integration by parts, and using FX (0) = 0. Integration of this over [0, z] leads to

φ(z)− φ(0)

= (λ/c)
∫

[0,z]
φ(u)du − (λ/c)

∫

[0,z]
{φ(0)FX (u)+

∫

[0,u]
φ′(u − x)FX (x)dx}du

= (λ/c)
∫

[0,z]
φ(z − u)du − (λ/c)φ(0)

∫

[0,z]
FX (u)du − (λ/c)

∫

[0,z]
FX (x)

×
∫

[x,z]
φ′(u − x)dudx

= (λ/c)
∫

[0,z]
φ(z − u)du − (λ/c)

∫

[0,z]
FX (x)φ(z − x)dx

= (λ/c)
∫

[0,z]
φ(z − u)(1− FX (u))du

= (λ/c)
∫

[0,z]
φ(z − u)F X (u)du. (26.34)
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Letting z ↑ ∞, and using φ(∞) = 1 (Exercise 5), one obtains

φ(0) = 1− (λ/c)
∫

[0,∞)

F X (u)du = 1− λμ/c. (26.35)

Since λμ/c = 1/(1+ρ), 1−λμ/c = ρ/(1+ρ), the proof of (26.31) is complete.�
Remark 26.3. If mY (q) ≡ E exp{qY } < ∞ for some q > 0, for a non-negative
random variable Y with P(Y = 0) < 1, then, given any γ > 1, there exists a unique
q1 > 0 such that mY (q1) = γ (Exercise 4).

Corollary 26.5 (Asymptotic Ruin Probability: Light-Tailed Case). (a) In addition to
the hypothesis of Theorem 26.4, assume that the integrated tail distribution FX,I has
a finite mgf

∫
[0,∞)

exp{qy}FX,I (dy) for some q > 0. Then there exists θ > 0 such
that

(1+ ρ)−1
∫

[0,∞)

exp{θx}FX,I (dx) = 1. (26.36)

(b) If, in addition to (a),

ν =
∫

[0,∞)

x(1+ ρ)−1 exp{θx}FX,I (dx) <∞, (26.37)

then one has

ψ(u) ∼ (1/νθ)(1− λμ/c) exp{−θu} (26.38)

as u →∞. Here the ratio of the two sides of the relation ∼ goes to 1 as u →∞.

Proof. Part (a) follows from Remark 26.3. For part (b), note that (see (26.31))

ψ(u)

= 1− φ(u) = (1+ ρ)−1 − (1+ ρ)−1
∫

(0,u]
(1− ψ(u − x))FX,I (dx)

= (1+ ρ)−1
∫

(u,∞)
FX,I (dx)+ (1+ ρ)−1

∫

(0,u]
ψ(u − x)FX,I (dx),(26.39)

so that

exp{θu}ψ(u) = exp{θu}(1+ρ)−1
∫

(u,∞)
FX,I (dx)+

∫

[0,u]
exp{θ(u− x)}ψ(u− x)G(dx),

(26.40)
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where G(dx) is the probability measure exp{θx}FX,I (dx)/(1+ ρ). Hence ψ̃(u) =
exp{θu}ψ(u) satisfies the renewal equation

ψ̃(u) = g(u)+
∫

[0,u]
ψ̃(u − x)G(dx). (26.41)

Note that g = f1 f2, where f1(u) = exp{θu} is increasing, and f2(u) = (1 +
ρ)−1

∫
(u,∞)

FX,I (dx) is decreasing. Also,

∫

[0,∞)
f1(u) f2(u)du = (1+ ρ)−1

∫

[0,∞)
exp{θu}[

∫

(u,∞)
FX,I (dx)]du

= (1+ ρ)−1
∫

[0,∞)
[
∫

[0,x)
exp{θu}du]FX,I (dx)

= (1+ ρ)−1(1/θ)
∫

[0,∞)
(exp{θx} − 1)FX,I (dx)

= (1/θ)(1− 1/(1+ ρ)) = (1/θ)(1− λμ/c) <∞. (26.42)

Hence g is directly Riemann integrable. By the Key Renewal Theorem (Corol-
lary 25.8) in Chapter 25, one has

lim
u→∞ ψ̃(u) =

∫

[0,∞)

g(x)dx/ν = (1/νθ)(1− λμ/c). (26.43)

�
Remark 26.4. On integration by parts, the integral on the left in (26.36) may be
shown to equal − 1

θ
+ 1

θ2μ
[−1+m(θ)λ+cθ

λ
], where m is the mgf of Zi = Xi − cAi .

It follows from Proposition 11.8 that there exists a unique θ = R > 0 such that
m(θ) = 1. Substituting this above and in (26.36), one obtains θ = ( c

λμ
−1)−1 = ρ−1

(Exercise 4). Under the additional assumption (b) in Corollary 26.5, it now follows
that ψ(u) ∼ de−u , where d = 1

νθ
(1− λμ

c ). (Also (26.36) holds with q = θ = R.)

Example 5 (Ruin Probability When Both Claim Size and Inter-arrival Time Are
Exponential). In the Cramér–Lundberg model, if the claim size X also has the
exponential distribution with parameter β, i.e., mean 1/β, then it is not difficult
to check that the renewal equation (26.39) is satisfied by

ψ(u) = exp{−Ru}/(1+ ρ), (26.44)

where R is the Lundberg constant R = θ = β − λ/c in this case (Exercise 6).
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We next turn to the general renewal model, that is, the Sparre–Andersen model.
For this we follow the approach using ascending ladder heights.7 For this define the
first ascending ladder epoch τ1,

[τ1 = n] = [S j ≤ 0 f or1 ≤ j ≤ n − 1, Sn > 0] (n = 1, 2, . . . ), (26.45)

recalling that Sn = Z1 + · · · + Zn(n = 1, 2, . . . ), S0 = 0. In view of the NPC, τ1 is
a defective random variable, with defect 1− p, where

0 < p = P(τ1 <∞) < 1. (26.46)

The second ascending ladder epoch τ2 of the sequence {Sn : n ≥ 1} is defined on
the set [τ1 < ∞] as the first ladder epoch of the sequence {Sτ1+n − Sτ1 : n =
0, 1, 2, . . . }. In this manner, one defines the ( j + 1)-th ascending ladder epoch τ j+1
on the event [τi < ∞ for i = 1, . . . , j] as the first ascending ladder epoch of the
sequence {Sτ j+n−Sτ j : n = 0, 1, 2, . . . }. Note that allowing the value∞ for τ j ( j =
1, 2, . . . ), they are stopping times for the Markov process {Sn : n = 0, 1, . . . }. The
first ascending ladder height L1 and its distribution are defined by

[L1 ∈ (0, x], τ1 = n] = [S j ≤ 0 for 1 ≤ j ≤ n − 1, Sn ∈ (0, x]], (26.47)

Hn(dx) = P(L1 ∈ dx, τ1 = n), (26.48)

and

[L1 ∈ (0, x]] = ∪n≥1[L1 ∈ (0, x], τ1 = n] = [L1 ∈ (0, x], τ1 <∞],

H(dx) = P(L1 ∈ (dx), τ1 <∞). (26.49)

Hence L1 is also a defective random variable with defect 1− p, being defined only
on the event [τ1 < ∞]. Successive ascending ladder heights L j+1( j ≥ 1) are
similarly defined, namely, L j+1 is the first ascending ladder height of the sequence
{Sτ j+n − Sτ j : n = 0, 1, 2, . . . }. Note that, by the strong Markov property, on the
set [τi < ∞ for i = 1, . . . , j], the conditional distribution of (τ j+1, L j+1) given
σ {(τi , Li ) : i = 1, . . . , j} is the same as the (defective) distribution of (τ1, L1). In
particular, L j+1 is independent of {(τi , Li ) : i = 1, . . . , j}, given [τi < ∞ for i =
1, . . . , j]. Expressing the ruin probability (26.24) as

ψ(u) = P(M > u), (26.50)

7Recall the ascending ladder height innovation introduced by Blackwell for the analysis of renewal
of random walks; see Chapter 25.
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where M := max{0, supn≥1 Sn} = max{0, S1, S2, . . . , Sn, . . . } a.s., one has

φ(u) = 1− ψ(u) = P(M ≤ u)

= P(M ≤ u, τ1 = ∞)+
∑

n≥1

P(M ≤ u, τi <∞ for i = 1, . . . , n, τn+1 = ∞)

= (1− p)+
∑

n≥1

P(M ≤ u, τi <∞ for i = 1, . . . , n)(1− p)

= (1− p)+
∑

n≥1

P(L1 + · · · + Ln ≤ u, τi <∞ . . . for i = 1, . . . , n)(1− p)

= (1− p)[1+
∑

n≥1

H∗n(u)], (26.51)

where H∗n(u) = P(L1 + · · · + Ln ≤ u, τi < ∞ for i = 1, . . . , n), and H is the
distribution function of the defective random variable L1 (see (26.49)). For the last
equality in (26.51), note that the conditional distribution of Ln on the set [τn <∞],
given σ {τ j , L j , 1 ≤ j ≤ n − 1}, is H(dx). Backward recursion then proves that
the joint distribution of L j , 1 ≤ j ≤ n on the event [τi < ∞ for i = 1, . . . , n], is
the product measure H(dx1) · · · H(dxn). Because H(dx) is defective, one cannot
apply Blackwell’s renewal theorem directly to compute the asymptotic value of

φ(u) = 1− ψ(u) = (1− p)
∑

n≥0

H∗n(u). (26.52)

Here we denote H∗0(dx) = δ0(dx), δ0 being the Dirac measure (point mass) at 0.
First consider the light-tailed case (26.25)–(26.27). We will use8 the i.i.d.

random variables Yi , i ≥ 1, associated with Zi , i ≥ 1, having the corresponding
distribution Fq0(dx) = exp{q0x}F(dx), where F is the distribution function
of Zi and q0 is as in (26.29). We will denote the ladder height probabilities
of {Yi : i ≥ 1} corresponding to the probabilities Hn,q0(dx), Hq0(dx)
corresponding to (26.47) and (26.49). Note that EYi = ∫

R
x Fq0(dx) =

∫
R

x exp{q0x}F(dx) = m′(q0) > 0, since, as shown in the derivation of the
Lundberg bound (26.29) with R = q0, m is strictly increasing at q0 (> q̃)
(see the proof of Proposition 11.8). Therefore, the ascending ladder epochs
and ascending ladder heights for the sequence {Yi : i ≥ 1} are proper (non-
defective) random variables. It is easy to check that F∗n

q0 (dx) = exp{q0x}F∗n(dx),
since the joint distribution of (Y1, . . . ,Yn) is Fq0(dy1)Fq0(dy2) · · · Fq0(dyn) =
exp{q0 y1} exp{q0 y2} · · · exp{q0 yn}F(dy1)F(dy2) · · · F(dyn) = exp{q0(y1 +
y2 + · · · + yn)}F(dy1)F(dy2) · · · F(dyn), which on integration, setting x =

8This follows the method of Feller (1971), Chapter XII.
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y1 + y2 + · · · + yn , yields
∫
R

f (x)F∗n
q0 (dx) = ∫

R
f (x) exp{q0x}F∗n(dx) for

every bounded measurable function f .

Lemma 7. Let Hq0,n and Hq be defined as in (26.49) and (26.50), but with Yi ’s in
place of Zi ’s. Then

Hq0,n(dx) = exp{q0x}Hn(dx), Hq0(dx) = exp{q0x}H(dx). (26.53)

Proof. One has, for every x > 0,

Hn,q0 (x)

= Pq0 (S j ≤ 0 for j = 1, .., n − 1, Sn ∈ (0, x])

=
∫

1x1+···+x j≤0 for j=1,...,n−1,x1+···+xn∈(0,x] exp{q0(x1 + · · · + xn)}F(dx1) · · · F(dxn)

= E(1[S j≤0 for j=1,...,n−1]1[Sn∈(0,x]] exp{q0Sn)}) = E(E(. . . |Sn))

=
∫

γn(y) exp{q0 y}F∗n(dy),

where

γn(y) = E(1[S j≤0 rm f or j=1,...,n−1]Sn)|[Sn=y].

This shows that Hn,q0(dy) = exp{q0 y}γn(y)F∗n(dy) = exp{q0 y}Hn(dy). Con-
sequently, Hq0(x) = ∑

n≥1 Hn,q0(x) = ∫
(0,x] exp{q0 y}H(dy), where Hq0(dx) =

exp{q0x}H(dx). It follows that the convolution H∗n
q0 (dx) is exp{q0x}H∗n(dx). This

completes the proof of the lemma. �
As a consequence, one now has

H∗n
q0 (dx) = exp{q0x}H∗n(dx), H∗n(dx) = exp{−q0x}H∗n

q0 (dx). (26.54)

Therefore, by (26.52),

φ(dx) = (1− p)
∑

n≥0

exp{−q0x}H∗n(dx), (26.55)

ψ(u) = (1− p)
∑

n≥0

∫

(u,∞)

exp{−q0x}H∗n(dx)

= (1− p)
∫

(u,∞)

exp{−q0x}Gq0(dx), (26.56)
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where Gq0(dx) is the renewal measure for Hq0 and, by Blackwell’s renewal
theorem,

Gq0(dx) =
∑

n≥0

(H∗n
q0 (dx) ∼ b−1dx, (26.57)

where b := ∫
(0,∞)

x Hq0(dx). Using this in (26.56), one arrives at the following
theorem.

Theorem 26.6 (Ruin in the Light-Tailed Sparre–Andersen Model). Under the
assumptions (26.25)–(26.27), letting R = q0, the ruin probability is, asymptotically,

ψ(u) ∼ (1− p)b−1
∫

(u,∞)

exp{−Rx}dx = (1− p) exp{−Ru}/bR, (u →∞).

(26.58)

We now turn to the case of heavy-tailed claim sizes. In particular, the claim size
does not have a finite moment generating function E exp{q Xi } for any q > 0, so
that

m(q) = E exp{q Zi } = ∞ ∀q > 0.

In this case, we use the distribution H̃ = H/p to normalize the defective ladder
height distribution H . Continuing with the notation G(u) = 1 − G(u) for a
distribution function G, rewrite (26.52) as

ψ(u) = 1− (1− p)
∑

n≥0

H∗n(u)

= 1− (1− p)
∑

n≥0

pn ˜H∗n(u)

= 1− (1− p)
∑

n≥0

pn(1− H̃∗n(u))

= (1− p)
∑

n≥0

pn H̃∗n(u)

= (1− p)
∑

n≥1

pn H̃∗n(u) (26.59)

for u > 0. Note that H̃∗0 = δ0. Assume that H̃ is subexponential. Then H̃ is
heavy-tailed and has the important characterization by Proposition 26.2 For every
n ≥ 2,

H̃∗n(u)/H̃(u)→ n as u →∞. (26.60)
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One may now substitute (26.60) inside the summation in (26.59) to get

ψ(u)/H̃(u) = (1− p)
∑

n≥1

pn H̃∗n(u)/H̃(u)

= (1− p)[p +
∑

n≥2

pn H̃∗n(u)/H̃(u)]

→ (1− p)[p +
∑

n≥2

npn]

= (1− p)
∑

n≥1

npn = p/(1− p), as u →∞. (26.61)

The justification of the interchange of the order of taking the limit (26.60) and the
summation over n, in (26.61), is provided by Kesten’s Lemma 4.

Theorem 26.7 (Ruin Under Heavy-Tailed Claim Size). In addition to (26.25) and
(26.26), assume that the normalized ladder height distribution H̃ is subexponential.
Then

ψ(u)/H̃(u)→ p/(1− p) as u →∞, (26.62)

where p = H(∞) = P(τ1 < ∞) is the total mass of the ascending ladder height
distribution H .

Since H is less tractable analytically, and perhaps computationally as well, the
following result is useful. For this, denote by FX the distribution of the claim size
X with mean μ and by FX,I the integrated tail distribution of the claim size X , with
density

fX,I (x) = (d/dx)FX,I (x) = (1/μ)
∫

(x,∞)

FX (t)dt, x ∈ (0,∞). (26.63)

The following useful result is stated here without proof.9

Corollary 26.8. Assume (26.25) and (26.26) and that the integrated claim size
distribution FX,I is subexponential. Then, writing μ, λ for the means of the claim
size Xi and the inter-arrival time Ai , respectively, one has

ψ(u)/F X,I (u)→ μ/(cλ− μ) as u →∞. (26.64)

Note that (26.62) and (26.64) imply, in particular, the following:

H̃(u))/F X,I (u)→ μ/(cλ− μ)]/p(1− p), as u →∞, (26.65)

9See Rolski et al. (1999), Theorem 6.5.11 for the proof.
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and

H(u)/FX,I (u)→ μ/[(cλ− μ)p], as u →∞. (26.66)

Example 6. In the general Sparre–Andersen model with the claim size having the
Pareto distribution with density

f (x, k, β) = βkβx−β−11(k,∞)(x),

it follows from (26.64) that

ψ(u) = (c/λμ− 1)−1kβ−1/uβ−1(1+ o(1)) as u →∞. (26.67)

Exercises

1. (a) Prove that the function represented in Proposition 26.1 is slowly varying at
infinity. [Hint: It is enough to show that (i) ∀a > 1, limx→∞

∫ ax
x

1
t g(t)dt =

0, and (ii) ∀0 < a < 1, limx→∞
∫ x

ax
1
t g(t)dt = 0. Use the fact that, given

any δ > 0, however small, there exists t1 > 0 such that |g(t)| < δ for all
t > t1.]

(b) (i) Assuming the Karamata Representation Theorem 26.1, prove that for all
a > 0, xa L(x)→∞ and x−a L(x)→ 0 as x →∞. (ii) Show that L(x) =
o(ln x) as x →∞.

2. Suppose that the claim sizes are fixed amounts Xi = a > 0 for all i ≥ 1 in
the Cramér–Lundberg model. Show that the Lundberg constant R is a decreasing
function of a. [Hint: Calculate R using (26.29).]

3. Determine heavy-/light-tailed properties of each of the following distributions:
(i) lognormal, (ii) log-Cauchy, (iii) Gamma, and (iv) Weibull distribution with

pdf f (x) = θxθ−1

βθ
exp{−( x

β
)θ }, x ≥ 0, θ, β > 0.

4. Verify the computation in Remark 26.4.
5. Complete the proof of (26.35).
6. (i) Verify the formula for the ruin probability for exponential claims and inter-

arrivals in Example 5. [Hint: If FX is exponential, then FX,I = FX .
Use (26.39).]

(ii) Do the same for the case in which the claim size distribution is a convex
combination of two exponential distributions, say having pdf 1

2β1e−β1x +
1
2β2e−β2x , x > 0, where β1, β2 > 0.

7. Which of the claim size distributions in Examples 1–4 satisfy the hypothesis of
Theorem 26.7, and what are the asymptotic ruin probabilities? [Hint: Examples 1
and 2. Use (26.64).]



Chapter 27
Special Topic: Fractional Brownian
Motion and/or Trends: The Hurst Effect

This chapter involves efforts to understand a phenomenon first reported in
connection with the Nile River data by Hurst (1951), referred to as the Hurst
phenomena, and identified as an anomaly by Feller (1951). The history is rich
by way of consideration of various possible scenarios ranging from heavy
tails, long range dependence, or climatic trends. The chapter is concluded
with a brief survey of mathematical aspects of the fractional Brownian motion
model by Mandelbrot and Wallis (1968) motivated by this application, as
well as in other contexts such as mathematical finance1 and economics. This
includes its extension to a random field model indexed by k-dimensional
Euclidean space.

Let {Yn : n = 1, 2, . . .} be a sequence of random variables representing the
annual flows into a reservoir. Let Sn = Y1 + · · · + Yn , n ≥ 1, S0 = 0. Also
let Y N = N−1SN denote the mean flow rate over a span of N years. A variety
of complicated natural processes (e.g., sediment deposition, erosion, etc.) constrain
the life and capacity of a reservoir. However a particular design parameter analyzed
extensively by hydrologists, based on an idealization in which water usage and

1An interesting construction of Rogers (1997) shows that the fractional Brownian motion model
is not arbitrage-free unless it is Brownian motion. That is, unless it is Brownian motion, it is
not a semi-martingale, and consequently there cannot exist an equivalent martingale measure; see
Chapter 23 for the financial math implications.
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natural loss would occur at an annual rate estimated by Y N units per year, is the
(dimensionless) statistic defined by

RN

DN
:= MN − m N

DN
, (27.1)

where

MN := max{Sn − nY N ; n = 0, 1, . . . , N } (27.2)

m N := min{Sn − nY N : n = 0, 1, . . . , N },

DN :=
[

1

N

N∑

n=1

(Yn − Y N )
2

] 1
2

, Y N = 1

N
SN . (27.3)

Here Sn is the total inflow for the first n years and nY N the losses at the assumed rate
Y N . The hydrologist Hurst (1951) stimulated much interest in the possible behaviors
of RN/DN for large values of N . On the basis of the data analyzed for regions of
the Nile River, Hurst published a finding that plots of log(RN/DN ) versus log N are
linear with slope H ≈ 0.75. Feller (1951) was soon to show this to be an anomaly
relative to the standard statistical framework of i.i.d. flows Y1, . . . , Yn having finite
second moment. The precise form of Feller’s analysis is as follows.

Let {Yn}∞n=1 be an i.i.d. sequence with

EYn = d, Var Yn = σ 2 > 0. (27.4)

First consider that, by the central limit theorem, SN = Nd + Op(N
1
2 ) in the sense

that (SN − Nd)/
√

N is, for large N , distributed approximately like a Gaussian
random variable with mean zero and variance σ 2. If one defines

M̃N = max{Sn − nd : 0 ≤ n ≤ N },
m̃ N = min{Sn − nd : 0 ≤ n ≤ N },
R̃N = M̃N − m̃ N , (27.5)

then by the functional central limit theorem (FCLT)

(
M̃N

σ
√

N
,

m̃ N

σ
√

N

)

&⇒ (M̃, m̃),
R̃N

σ
√

N
&⇒ R̃ as n →∞, (27.6)
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where &⇒ denotes convergence in distribution of the sequence on the left to the
distribution of the random variable(s) on the right. Here

M̃ := max{Bt : 0 ≤ t ≤ 1},
m̃ := {Bt : 0 ≤ t ≤ 1},
R̃ := M̃ − m̃, (27.7)

with {Bt }t≥0 a standard Brownian motion starting at zero. It follows that the

magnitude of R̃N is Op(N
1
2 ). Under these circumstances, therefore, one would

expect to find a fluctuation between the maximum and the minimum of partial sums,

centered on the mean, over a period N to be of the order N
1
2 . To see that this still

remains for RN/(
√

N DN ) in place of R̃N/(
√

Nσ), first note that, by the strong law
of large numbers applied to Yn and Y 2

n separately, we have with probability 1 that
Y N → d, and

D2
N =

1

N

N∑

n=1

Y 2
n − Y

2
N → EY 2

1 − d2 = σ 2, as N →∞. (27.8)

Therefore, with probability 1, as N →∞,

RN√
N DN

∼ RN√
Nσ

, (27.9)

where “∼” indicates “asymptotic equality” in the sense that the ratio of the two
sides goes to 1 as N → ∞. This implies that the asymptotic distributions of the
two sides of (27.9) are the same. Next notice that, with⇒ denoting convergence in
distribution,

MN

σ
√

N
= max

0≤n≤N

(
(Sn − nd)− n(Y N − d)

σ
√

N

)

= max
0≤t≤1

(
S[Nt] − [Nt]d

σ
√

N
− [Nt]

N

(
SN − Nd

σ
√

N

))

(27.10)

⇒ max
0≤t≤1

(Bt − t B1) := M

and

m N

σ
√

N
= min

0≤t≤1

(
S[Nt] = [Nt]d

σ
√

N
− [Nt]

N

(
SN − Nd

σ
√

N

))

⇒ min
0≤t≤1

(Bt − t B1) := m,
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and
(

MN

σ
√

N
,

m N

σ
√

N

)

⇒ (M,m). (27.11)

Therefore,

RN

DN
√

N
∼ RN

σ
√

N
⇒ M − m = R, (27.12)

where R is a strictly positive random variable. Once again then, RN/DN , the so-

called rescaled adjusted range statistic, is of the order of Op(N
1
2 ).

We will say that the Hurst exponent is H if RN/(DN N H ) converges in
distribution to a nonzero real-valued random variable as N tends to infinity. In
particular, this includes the case of convergence in probability to a positive constant.
The basic problem raised by Hurst is to identify circumstances under which one
may obtain an exponent H > 1

2 , representing the so-called Hurst effect. The next
major theoretical result following Feller was again somewhat negative, though quite
insightful. Specifically, Moran (1964) considered the case of i.i.d. random variables
Y1, Y2, . . . having “heavy tails” in their distribution. In this case, the re-scaling
by DN serves to compensate for the increased fluctuation in RN to the extent that
cancellations occur resulting again in H = 1

2 .
In the remainder of this chapter, we will consider two theories that provide

H > 1
2 . In the one cited earlier, H > 1

2 is shown to occur under a stationary
but strongly correlated model having moments of all orders. In the other theory,2

H > 1
2 is shown to occur for independent but nonstationary flows having finite

second moments. In particular, it will be shown that under an appropriately slow
trend superimposed on a sequence of i.i.d. random variables, the Hurst effect
appears.

Let {Xn}∞n=1 be an i.i.d. sequence with EXn = d and Var Xn = σ 2 as above,
and let f (n) be an arbitrary real-valued function on the set of positive integers. We
assume that the observations Yn are of the form

Yn = Xn + f (n). (27.13)

The partial sums of the observations are

Sn = Y1 + · · · + Yn = X1 + · · · + Xn + f (1)+ · · · + f (n)

= S∗n +
n∑

j=1

f ( j), S0 = 0, (27.14)

2Bhattacharya et al. (1983).
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where

S∗n = X1 + · · · + Xn . (27.15)

Introduce the notation D∗N for the standard deviation of the X -values {Xn : 1 ≤ n ≤
N },

D∗2
N := 1

N

N∑

n=1

(Xn − X N )
2. (27.16)

Then, writing f N =
∑N

n=1 f (n)/N ,

D2
N :=

1

N

N∑

n=1

(Yn − Y N )
2

= 1

N

N∑

n=1

(Xn − X N )
2 + 1

N

N∑

n=1

( f (n)− f N )
2

+ 2

N

N∑

n=1

( f (n)− f N )(Xn − X N )

= D∗2
N + 1

N

N∑

n=1

( f (n)− f N )
2 + 2

N

N∑

n=1

( f (n)− f N )(Xn − X N ).

(27.17)

For convenience, write

μN (n) :=
n∑

j=1

( f ( j)− f N ), μN (0) = 0,

ΔN := max
0≤n≤N

μN (n)− min
0≤n≤N

μN (n). (27.18)

Also write

MN = max
0≤n≤N

{Sn − nY N } = max
0≤n≤N

{
S∗n − nX N + μN (n)

}
,

m N = min
0≤n≤N

{Sn − nY N } = min
0≤n≤N

{
S∗n − nX N + μN (n)

}
,

M∗
N = max

0≤n≤N
{S∗n − nX N }, m∗N = min

0≤n≤N
{S∗n − nX N },

RN = MN − m N ,

R∗N = M∗
N − m∗N . (27.19)
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Observe that

MN ≤ max
0≤n≤N

μN (n)+ max
0≤n≤N

(S∗n − nX N ),

m N ≥ min
0≤n≤N

μN (n)+ min
0≤n≤N

(S∗n − nX N ), (27.20)

and

MN ≥ max
0≤n≤N

μN (n)+ min
0≤n≤N

(S∗n − nX N ),

m N ≤ min
0≤n≤N

μN (n)+ max
0≤n≤N

(S∗n − nX N ). (27.21)

From (27.20), one gets RN ≤ ΔN + R∗N , and from (27.21), RN ≥ ΔN − R∗N . In
other words,

|RN −ΔN | ≤ R∗N . (27.22)

In the same manner,

|RN − R∗N | ≤ ΔN . (27.23)

It remains to estimate DN and ΔN .

Lemma 1. If f (n) converges to a finite limit, then D2
N converges to σ 2 with

probability 1.

Proof. In view of (27.17), it suffices to prove

1

N

N∑

n=1

( f (n)− f N )
2+ 2

N
( f (n)− f N )(Xn−X N )→ 0 as N →∞. (27.24)

Let α be the limit of f (n). Then

1

N

N∑

n=1

( f (n)− f N )
2 = 1

N

N∑

n=1

( f (n)− α)2 − ( f N − α)2. (27.25)

Now if a sequence g(n) converges to a limit θ , then so do its arithmetic means
N−1 ∑N

1 g(n), N ≥ 1. Applying this to the sequences ( f (n) − α)2 and f (n),
observe that (27.25) goes to zero as N →∞. Next

1

N

N∑

n=1

( f (n)− f N )(Xn− X N ) = 1

N

N∑

n=1

( f (n)−α)(Xn−d)− ( f N −α)(X N −d).

(27.26)
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The second term on the right clearly tends to zero as N increases. Also, by the
Schwarz inequality,

∣
∣
∣
∣
∣

1

N

N∑

n=1

( f (n)− α)(Xn − d)

∣
∣
∣
∣
∣
≤ 1

N

(
N∑

n=1

( f (n)− α)2

) 1
2
(

N∑

n=1

(Xn − d)2
) 1

2

.

By the strong law of large numbers, N−1 ∑N
n=1(Xn − d)2 → E(X1 − d)2 = σ 2

and the arithmetic means N−1 ∑N
n=1( f (n) − α)2 go to zero as N → ∞, since

( f (n)− α)2 → 0 as n →∞. �
From (27.12), (27.22), and Lemma 1, we get the following result.

Theorem 27.1. If f (n) converges to a finite limit, then, for every H > 1
2 ,

∣
∣
∣
∣

RN

DN N H
− ΔN

DN N H

∣
∣
∣
∣→ 0 in probability as N →∞. (27.27)

In particular, the Hurst effect with exponent H > 1
2 holds if and only if, for some

positive number c′,

lim
N→∞

ΔN

N H
= c′. (27.28)

Example 1. Take

f (n) = α + c(n + m)β (n = 1, 2, . . .), (27.29)

where α, c,m, and β are parameters, with c �= 0, m ≥ 0. The presence of m
indicates the starting point of the trend, namely, m units of time before the time
n = 0. Since the asymptotics are not affected by the particular value of m, we
assume henceforth that m = 0 without essential loss of generality. For simplicity,
also take c > 0. The case c < 0 can be treated in the same way.

First let β < 0. Then f (n)→ α, and Theorem 27.1 applies. Recall that

ΔN = max
0≤n≤N

μN (n)− min
0≤n≤N

μN (n), (27.30)

where

μN (n) =
n∑

j=1

( f ( j)− f N ) for 1 ≤ n ≤ N ,

μN (0) = 0. (27.31)
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Notice that, with m = 0 and c > 0,

μN (n)− μN (n − 1) = c

⎛

⎝nβ − 1

N

N∑

j=1

jβ

⎞

⎠ (27.32)

is positive for n < (N−1 ∑N
j=1 jβ)1/β and is negative or zero otherwise. This shows

that the maximum of μN (n) is attained at n = n0 given by

n0 =
⎡

⎢
⎣

⎛

⎝ 1

N

N∑

j=1

jβ

⎞

⎠

1/β
⎤

⎥
⎦ , (27.33)

where [x] denotes the integer part of x . The minimum value of μN (n) is zero,
attained at n = 0 and n = N . Thus,

ΔN = μN (n0) = c
n0∑

k=1

⎛

⎝kβ − 1

N

N∑

j=1

jβ

⎞

⎠ . (27.34)

By a comparison with a Riemann sum approximation to
∫ 1

0 xβdx , one obtains

1

N

N∑

j=1

jβ = Nβ
N∑

j=1

(
j

N

)β 1

N
∼

⎧
⎪⎪⎨

⎪⎪⎩

(1+ β)−1 Nβ for β > −1

N−1 log N for β = −1

N−1 ∑∞
j=1 jβ for β < −1.

(27.35)

By (27.33) and (27.35),

n0 ∼

⎧
⎪⎪⎨

⎪⎪⎩

(1+ β)−1/βN for β > −1

N/ log N for β = −1
(∑∞

1 jβ
)1/β

N 1/(−β) for β < −1.

(27.36)

From (27.34)–(27.36), it follows that

ΔN ∼

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cn0

(
nβ0

1+β − Nβ

1+β
)

∼ c1 N 1+β, −1 < β < 0,

cn0(n
−1
0 log n0 − N−1 log N ) ∼ c log N , β = −1,

c
∑∞

j=1 jβ = c2, β < −1.

(27.37)

Here c1 = c(−β)(1+ β)−2−1/β , and c2 is a positive constant depending only on β.
Now consider the following cases.
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Case 1: − 1
2 < β < 0. In this case, Theorem 27.1 applies with H(β) = 1+ β > 1

2 .
Note that, by Lemma 1, DN ∼ σ with probability 1. Therefore,

RN

DN N 1+β → c1 > 0 in probability as N →∞, if − 1

2
< β < 0. (27.38)

Case 2: β < − 1
2 . Use inequality (27.23), and note from (27.37) thatΔN = op(N

1
2 ).

Dividing both sides of (27.23) by DN N
1
2 , one gets, in probability as N →∞,

RN

DN N
1
2

∼ R∗N
DN N

1
2

∼ R∗N
σN

1
2

if β < −1

2
. (27.39)

But R∗N/σN
1
2 converges in distribution to R by (27.11). Therefore, the Hurst

exponent is H(β) = 1
2 .

Case 3: β = 0. In this case, the Yn are i.i.d. Therefore, as proved at the outset, the
Hurst exponent is 1

2 .
Case 4: β > 0. In this case, Lemma 1 does not apply, but a simple computation
yields

DN ∼ c3 Nβ with probability 1 as N →∞, if β > 0. (27.40)

Here c3 = β/(β + 1). Combining (27.40), (27.37), and (27.22), one gets

RN

N DN
→ c4 in probability as N →∞, if β > 0, (27.41)

where c4 is a positive constant. Therefore, H(β) = 1.
Case 5: β = − 1

2 . In this case, one considers the process {Z N (s)}0≤s≤1 defined by

Z N

( n

N

)
= Sn − nY N√

N DN
for n = 1, 2, . . . , N , Z N (0) = 0,

and linearly interpolated between n/N and (n + 1)/N . Observe that Z N (n/N ) =
(S∗n − nX N )/

√
N DN − μN (n/N )/

√
N DN and that the polygonal process corre-

sponding to (S∗n − nX N )/
√

N DN converges in distribution to a Brownian bridge
{B∗s }0≤s≤1, by the FCLT (Theorem 17.2). On the other hand, for 0 < t ≤ 1,

μN ([Nt]) = c
[Nt]∑

j=1

j− 1
2 − c

[Nt]
N

N∑

j=1

j− 1
2

= c
√

N

⎧
⎨

⎩

[Nt]∑

j=1

(
j

N

)− 1
2 · 1

N
− [Nt]

N

N∑

j=1

(
j

N

)− 1
2 · 1

N

⎫
⎬

⎭
∼ 2c

√
N (
√

t − t).

(27.42)
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Fig. 27.1 The Hurst
exponent as a Function of the
Trend Rate β

−1
2

0

1
2

1

β

H(β)

Thus {Z N (s)}0≤s≤1 converges in distribution to {Zs := B∗s + 2c
√

s(1−√s)}0≤s≤1,
and the asymptotic distribution of RN/(

√
N DN ) is the non-degenerate distribution

of

max
0≤s≤1

Z∗s − min
0≤s≤1

Z∗s .

In particular, H(− 1
2 ) = 1

2 .

The graph in Figure 27.1 of H(β) versus β summarizes the results of the
preceding cases 1 through 5.

For purposes of data analysis, note that (27.38) implies

log
RN

DN
− [

log c′ + (1+ β) log N
]→ 0 if −1

2
< β < 0. (27.43)

In other words, for large N , the plot of log RN/DN against log N should be
approximately linear with slope H = 1+ β, if − 1

2 < β < 0.
This concludes the analysis of the statistic RN/DN for data in which there is a

time varying trend.
For an alternative,3 explanation of the occurrence of H > 1

2 suppose that Y1,
Y2, . . . is a stationary Gaussian sequence of random variables with mean zero and
covariances γ (k) = E{YnYn+k}, k = 0, 1, 2, . . . , σ 2 := γ (0). By stationarity it is
meant that the distribution of {Yn}∞n=1 is invariant under time shifts, i.e., it equals the
distribution of {Yn+k}∞n=1 for every k = 1, 2, . . . . One may note that there is no loss
in generality in centering the observations for the statistics in (27.16) and (27.19)
when the mean is constant. We will consider the case of a slow decay of correlations
of the form

γ (k) ∼ ck−θ as k →∞ (27.44)

3See Mandelbrot and Wallis (1968).
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for some 0 < θ ≤ 1, c > 0. A proof that such covariance functions exist will be
given below.

With H ≡ H(θ) = 2−θ
2 ∈ (1/2, 1], let

Y (N )
t = S[Nt]

N H
, t ≥ 0, (27.45)

and let {Ỹ (N )
t }t≥0 be the corresponding polygonal process obtained by linear

interpolation of the values S[Nt]
N H , t = 0, 1

N , 2
N , . . . . Then the finite-dimensional

distributions of {Y (N )
t }t≥0 (and {Ỹ (N )

t }t≥0) are Gaussian with mean zero and for
t1 < t2, one has as N →∞

E

(
Y (N )

t2 − Y (N )
t1

)2

≡ N 2H+θ−2
E

(
Y (N )

t2 − Y (N )
t1

)2

= [N (t2 − t1)]σ 2

N 2−θ + 2

N 2−θ
[N (t2−t1)]−1∑

k=1

[N (t2 − t1)− k]γ (k)+ o(1)

= o(1)+ 2
[N (t2−t1)]−1∑

k=1

[

t2 − t1 − k

N

](
k

N

)−θ
γ (k)

k−θ
· 1

N

→ c′(t2 − t1)
2−θ

∫ 1

0
(1− x)x−θdx = c′′(t2 − t1)

2−θ . (27.46)

From (27.46), it follows that Var(Y (N )
t ) → c′′t2−θ and Cov(Y (N )

t1 ,Y (N )
t2 ) →

1
2 c′′{t2−θ

2 +t2−θ
1 −(t2−t1)2−θ } = f (t1, t2), say (t1 < t2). Therefore, the mean vector

and covariance matrix of the (Gaussian) finite-dimensional distributions converge.
This establishes convergence of the Gaussian finite-dimensional distributions.

Since, as in (17.6), for δ > 0, using Chebyshev’s inequality, one has

P

(

sup
0≤t≤T

∣
∣
∣Y

(N )
t − Ỹ (N )

t

∣
∣
∣ > δ

)

≤ P

( |Ym |
N H

> δ for some m = 1, 2, . . . , [N T ] + 1

)

(27.47)

≤ ([N T ] + 1)
E|Y1|r
Nr H δr

= o(1) as N →∞,

for any choice of r > 1
H = 2

2−θ , the limit distributions of {Y (N )
t }t≥0 and {Ỹ (N )

t }t≥0
coincide. The existence of a limit distribution on the space C[0,∞) follows by a
tightness computation (Exercise 2). The corresponding limit process is a mean zero
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Gaussian process {B(H)
t : t ≥ 0} having continuous sample paths with covariance

E{B(H)
t B(H)

s } = 1
2 {s2H + t2H − |t − s|2H } (2H = 2 − θ > 1) referred to as a

fractional Brownian motion. The case θ = 1 is Brownian motion.
The functional limit theorem (weak convergence) above extends4 to non-

Gaussian stationary sequences {Yn}∞n=1 with correlations of the form (27.44) as
well. To conclude this chapter, let us calculate the Hurst exponent for this model.
We have, in the same manner as (27.10) and (27.11) but with the N H scaling, that
as N →∞,

(
MN

σN H
,

m N

σN H

)

&⇒
(

max
0≤t≤1

(B(H)
t − t B(H)

1 ), min
0≤t≤1

(B(H)
t − t B(H)

1 )

)

.

(27.48)

Also since Y N = SN
N has mean zero and since EY

2
N ≡ (N 2H/N 2)E(Y (N )

1 )2 → 0
by (27.46), one has Y N → 0 in probability as N →∞. Similarly, EY 2

i = σ 2, and

E{(Y 2
i − σ 2)(Y 2

i+k − σ 2)} = 2γ 2(k), implies that D2
N = 1

N

∑N
i=1(Yi − Y N )

2 =
1
N

∑N
i=1 Y 2

i − (Y N )
2 → σ 2 in probability as N →∞, since

Var

(
1

N

N∑

i=1

Y 2
i

)

= E(Y 2
1 − σ 2)2

N
+ 2

N 2

N−1∑

i=1

N−i∑

k=1

E{(Y 2
i − σ 2)(Y 2

i+k − σ 2)} → 0

as N →∞.
In the case 0 < θ < 1, the power law decay of correlations is often referred to

as a long range dependence in this context.5 However this is only a reflection of the
scaling by N H and non-Brownian limit. For Brownian motion (θ = 1), the latter is
an independent sequence.

Remark 27.1. The model (27.13), (27.14) is that of a random walk with a nonlinear
growth in mean. It has been shown that if there is a trend EYn = f (n), which decays
slowly, as is the case in Example 1 with f (n) = O(nβ) and − 1

2 < β < 0, then the
Hurst effect is manifested. It should be noted that the assumption “{Xn}∞n=1 is i.i.d.”
in this case can be relaxed to “{Xn}∞n=1 is stationary and weakly dependent.”6 That
is, all results derived for the model (27.13) and Example 1 carry over to the case
of a stationary sequence {Xn}∞n=1 having finite second moments for which both the
strong law of large numbers and the FCLT hold under the same scaling as in the
i.i.d. case. Observe that the only properties of the sequence {Xn}∞n=1 that have been

made use of are as follows: as N →∞, (1) X N → EX1 a.s., 1
N

∑N
j=1 X2

j → EX2
1

a.s. and (2) the polygonal process {X̃ (H)
t }t≥0 obtained by linear interpolation of

4See Samorodnitsky and Taqqu (2016) for comprehensive treatment of central limit theory under
long range dependence.
5Also see Samorodnitsky (2006).
6See Bradley (2007) for comprehensive treatment of limit theorems under weak dependence.
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X̃ (N )
n/N := (S∗n − nd)/

√
N (n = 0, 1, . . .) converges in distribution to a Brownian

motion {Xt }t≥0 with a positive diffusion coefficient. Thus the Hurst effect shows up
for “weakly dependent” {Yn}∞n=1 with slowly decaying mean, as well as for “strongly
dependent” stationary {Yn}∞n=1.

The fractional Brownian motion naturally extends to a random field as follows.

Definition 27.1. The fractional Brownian random field with exponent H ∈ (0, 1)
is the mean zero Gaussian process {B(H)

x : x ∈ R
k} having continuous sample paths

with covariance

ΓH (x, y) = E{B(H)
x B(H)

y } = 1

2
{|x |2H + |y|2H − |x − y|2H }, x, y ∈ R

k .

The case H = 1
2 defines a random field referred to as multiparameter Brownian

motion.7 However, for this definition to serve as a starting point, one needs
to check that (i) ΓH (x, y) is positive-definite8 and (ii) there is a version with
continuous paths. This second point can easily be obtained as a consequence of
the Kolmogorov–Chentsov condition and is left as Exercise 1.

Lemma 2. Fix 0 < H < 1, and define

γH (s, r) = |s − r |H− 1
2 sign(s − r)+ |r |H− 1

2 sign(r), s, r ∈ R.

Then γH (t, ·) ∈ L2(R) for each t and

〈γH (t, ·), γH (s, ·)〉 = cH (|s|2H + |t |2H − |s − t |2H ),

for a positive constant cH .

Proof. First note that |1 − u|H− 1
2 sign(u) and |u|H− 1

2 sign(u) are locally square-
integrable in neighborhoods of u = 0 and u = 1, γH (0, r) = 0 and γ 2

H (r, t) =
|t |2H−1γ 2

H (1,
r
t ), t �= 0. Moreover, for H < 1,

∫ −2

−∞
γ 2

H (1, u)du +
∫ ∞

2
γ 2

H (1, u)du

= 2
∫ ∞

2
γ 2

H (1, u)du = 2
∫ ∞

2
{u H− 1

2 − (u − 1)H− 1
2 }2du

7Lévy (1945).
8Historically the positive-definiteness problem was solved for multiparameter Brownian motion
by Schoenberg (1938) and more generally for 0 < H < 1 by Gangolli (1967). The simpler proof
here is given in Ossiander and Waymire (1989).
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= 2
∫ ∞

2

(
∫ u

u−1
(H − 1

2
)vH− 3

2 dv
)2

du

≤ 2(H − 1

2
)2
∫ ∞

2

∫ u

u−1
v2H−3dvdu

≤ 2(H − 1

2
)2
∫ ∞

2
(u − 1)2H−3du <∞. (27.49)

Thus, for each t , γH (t, ·) ∈ L2(R), and ||γH (t, ·)||22 = 2cH |t |2H , where cH =
1
2 ||γH (1, ·)||22 > 0. So, γH (t, ·)− γH (s, ·) ∈ L2(R), and

||γH (t, ·)− γH (s, ·)||22 =
∫

R

{|t − r |H− 1
2 sign(t − r)− |s − r |H− 1

2 sign(s − r)}2dr

=
∫

R

{|t − s − y|H− 1
2 sign(t − s − y)+ |y|H− 1

2 sign(y)}2dy

= ||γH (t − s, ·)||22 = 2cH |t − s|2H . (27.50)

The assertion follows since

〈γH (t, ·), γH (s, ·)〉 = 1

2
{||γH (t, ·)||22 + ||γH (s, ·)||22 − ||γH (t, ·)− γH (s, ·)||22}.

�
Proposition 27.2. For H ∈ (0, 1), the kernel ΓH (x, y), x, y ∈ R

k is positive-
definite.

Proof. Transforming to spherical coordinates, one has

∫

Sk−1

∫

Rk
γH (〈x, θ〉, r)γH (〈y, θ〉, r)drdθ

=
∫

Sk−1

1

2
cH {|〈x, θ〉|2H + |〈y, θ〉|2H − |〈x − y, θ〉|2H }dθ

= Ck,H {|x |2H + |y|2H − |x − y|2H }, (27.51)

where Ck,H = 1
2 cH

∫
Sk−1 |〈ϕ, θ〉|2H dθ does not depend on ϕ ∈ Sk−1. Thus, one has

∑

1≤i, j≤m

ΓH (xi , x j ) =
∑

1≤i, j≤m

ci c j

∫

Sk−1

∫

Rk
γH (〈xi , θ〉, r)γH (〈x j , θ〉, r)drdθ

=
∫

Sk−1

∫

Rk

( m∑

i=1

ciγH (〈xi , θ〉, r)
)2

drdθ ≥ 0.

�
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Exercises

1. Use the Kolmogorov–Chentsov condition to show the existence of a continuous
version of the fractional Brownian random field. [Hint: Check that B(H)

x −B(H)
y is

Gaussian with mean zero and variance E|B(H)
x −B(H)

y |2 = |x− y|2H from which

the higher order moments follow as E|B(H)
x − B(H)

y |2k = (2k)!
k!2k |x − y|2k H , k ≥ 1.

Choose k > 1
2H .]

2. Prove tightness of the Gaussian polygonal process {Y (N )
t }t≥0. [Hint: It is

sufficient to show that there are positive numbers α, β, and M such that E|Y (N )
t −

Y (N )
s |α ≤ M |t − s|1+β . Make computations similar to those for the 4th-moment

proof9 of the FCLT.]
3. Show that E(B(H)

t − B(H)
s )2 = |t − s|2H .

4. (Self-similarity of Fractional Brownian Motion) Show that the distribution
of the fractional Brownian motion with exponent H is invariant under the
transformation Wt = λ−H B(H)

λt , t ≥ 0, for any fixed but arbitrary λ > 0.
5. Use the Kolmogorov–Chentsov theorem to show that on any finite time interval,

fractional Brownian motion with the Hurst exponent H is a.s. H older continuous
of order θ for any 0 < θ < H .

6. Suppose that Y1, . . . ,Yn is an i.i.d. sequence with symmetric stable distribution
having characteristic function EeiξY1 = e−|ξ |α , ξ ∈ R, for an exponent 0 < α ≤
2. In this exercise, we compute the expected (unadjusted) range of the sums as a
function of n.

(i) Show that n− 1
α Sn := n− 1

α (Y1 + · · · + Yn) =dist Y1 for each n ≥ 1.
Assume that 1 < α ≤ 2 in the remainder of exercises (ii)–(iv).

(ii) Show that E|Y1| <∞ and a.s. Sn
n → EY1 = 0.

(iii) Let c = Emax{0,Y1} > 0. Show that ES+n = n
1
α c. Let Mn =

max{0, S1, . . . , Sn}, and show EMn = c
∑n

k=1 k
1
α
−1 ∼ cαn

1
α as n →∞.

(iv) Let mn = min{0, S1, . . . , Sn}, and show E(Mn − mn) = 2EMn ∼ 2cαn
1
α

as n → ∞. [Hint: Use scaling and Spitzer (1956) combinatorial lemma in
(iii).]

9See BCPT, p. 152.



Chapter 28
Special Topic: Incompressible
Navier–Stokes Equations and the
Le Jan–Sznitman Cascade

The three-dimensional incompressible Navier–Stokes equations are nonlinear
partial differential equations formulated in an effort to embody the basic
physics of fluid flow in accordance with Newton’s laws of motion (See Landau
and Lifshitz (1987)). The equations are involved in models of fluid flow with
applications ranging from modeling ocean currents in oceanography to blood
flow in medicine, among many others. However, understanding the existence
and/or uniqueness of smooth solutions to these equations, when the initial
data is smooth, presents one of the great unsolved mathematical challenges
of the twentieth and twenty-first centuries (Ladyzhenskaya (2003), Fefferman
(2006)). The main goal of the present chapter is to present a probabilistic
cascade model of Le Jan and Sznitman (1997) and its subsequent extensions,
in which solutions may be represented as expected values of a certain vector
product over a random tree, provided the expectations exist.

Assuming constant (unit) mass density, the equations take the form of four nonlinear
partial differential equations in four unknowns of a scalar pressure p and the three
scalar components of velocity v = (v1, v2, v3). In vector form, the incompressible
Navier–Stokes equations in free space are

∂v

∂t
+ (v · ∇)v = νΔv−∇ p+ g, ∇ · v = 0, v(0+, x) = v0(x), x ∈ R

3, (28.1)

where ν > 0 is a positive (viscosity) parameter, v0 : R3 → R
3 is the initial velocity

data, ∇ = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

), Δ = ∇ · ∇ = ∑3
j=1

∂2

∂x2
j
, and g : [0,∞) × R

3 → R
3

is an external forcing. It is to be emphasized that the incompressibility condition
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∇ ·v = 0 is to hold at all points in time and space as part of the system of equations,
including for the initial data. For convenience, we will also assume the forcing to be
incompressible. In coordinate form, the system of equations involves four unknown
scalar coordinates, v1, v2, v3 and the pressure p, governed by the following four
scalar equations:

∂v j

∂t
+

3∑

k=1

vk
∂v j

∂xk
= ν

3∑

k=1

∂2v j

∂x2
k

− ∂p

∂x j
+g j ,

3∑

k=1

∂vk

∂xk
= 0, j = 1, 2, 3, (28.2)

in addition to the given three coordinates of initial velocity.
The left-hand side of the equation is the acceleration of the fluid at time-space

location (t, x) when measured in the Eulerian coordinate system. That is, one views
the (unit mass density) fluid from the perspective of fluid parcels passing by the
location x at time t . In particular, the nonlinear term is an artifact of the frame
of reference, as opposed to modeling assumptions, and is therefore intrinsic to the
equations of motion. The right-hand side describes the dispersive (linearized stress-
strain relations on the fluid), the pressure, and the external forces acting on the fluid
that produce the flow in accordance with Newton’s “F= MA.”The equation ∇ ·v = 0
is the incompressibility condition for the flow, assuming constant fluid mass density.

Remark 28.1. As a matter of first principles, the velocity field at time t and
spatial location x is v(t, x). The position in R

3 of a fluid parcel at time t
originating at x(0) = a, denoted by x(t, a), is subject to the instantaneous
velocity field v(t, x(t, a)). The acceleration is, according to the chain rule, given
as d

dt v(t, x(t, a)) = ∂v
∂t + v · ∇v. If one ignores viscous forces, then the force per

unit mass ∂v
∂t + (v · ∇)v is a conservative force and, therefore, must be the gradient

of a potential function. This potential is referred to as the pressure. The equations
take the form

∂v

∂t
+ (v · ∇)v = −∇ p, ∇ · v = 0, v(0+, x) = v0(x), x ∈ R

3, (28.3)

and are called the Euler equations. The inclusion of the term νΔ in the Navier–
Stokes equations is an attempt to model and resolve intrinsic viscous forces.

The question of whether given any smooth initial velocity field v(0, x) = v0(x),
there is (in a suitable sense) a unique smooth solution to (28.1) for all t > 0
and all x ∈ R

3 remains a major unsolved problem for mathematics and physics.
Furthermore, to solve this problem,1“One must leave both the choice of the phase
space and the class of generalized solutions to the researcher without prescribing
to him” infinite smoothness or some other smoothness of solutions. The only
requirement needed is indeed that the uniqueness theorem must hold in the chosen
class of generalized solutions.” To the point, it is known that a weak solution

1This quote is attributed to Ladyzhenskaya (2003).
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exists2 for the incompressible Navier–Stokes equations, given smooth initial data,
that is unique for as long as it remains a smooth solution. The lack of uniqueness of
a smooth solution would imply the existence of a non-smooth solution for the given
initial data. However the uniqueness problem has remained open in the absence of a
small initial data constraint. In this regard, the Le Jan–Sznitman cascade3 provides
a novel probabilistic framework in which to address representations of solutions
for these equations as expected values of certain naturally associated multiplicative
cascades, especially when relaxed to the Le Jan–Sznitman cascade without coin
tossing4

Remark 28.2. Historically,5 the two-dimensional incompressible Navier–Stokes
equations were shown to have unique globally stable weak solutions6 on the torus
(i.e., for bounded domain with periodic boundary conditions). In three dimensions,
similar global existence results for weak solutions were also obtained by Leray7 and,
later by Hopf8 but in contrast to 2d, uniqueness and smoothness remain open in 3d.

The Le Jan–Sznitman cascade originates with a probabilistic representation of
solutions to a Fourier-transformed version of (28.1) in integrated or the so-called
mild form. Specifically, denote the Fourier transform of a vector-valued function
f ≡ ( f1, f2, f3) : R3 → R

3 by f̂ = ( f̂1, f̂2, f̂3), where

f̂ j (ξ) = (2π)−
3
2

∫

R3
e−iξ ·x f j (x)dx, ξ ∈ R

3, j = 1, 2, 3,

when it exists.9

2Leray proved existence of a global weak solution for any initial data in L2(R3), i.e. finite energy.
Hopf (1951) reached the same conclusion for a bounded domain with homogeneous Dirichlet
boundary and finite energy conditions. The existence of a global weak solution for any smooth
initial data was shown by Lemarié-Rieusset (2002). Their uniqueness and smoothness remain open
in 3d.
3Le Jan and Sznitman (1997).
4The Le Jan–Sznitman cascade can be relaxed to permit possible explosion of the associated
branching process as a route to non-uniqueness in Dascaliuc et al. (2015). However the full
treatment exceeds the space limitations on this chapter and will not be presented in this volume
beyond remarks and an example illustration of ideas at the end of this chapter.
5See Ladyzhenskaya (2003) for a more detailed overview of the historical developments.
6See Chapter 4 of the PhD thesis of Leray (1933).
7Leray (1934): Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta. Math. 63 loc
cit.
8Hopf (1951).
9See BCPT Chap. VI for a comprehensive treatment of the Fourier transform. It may be noted that
the definition of Fourier transform in the present chapter is a standard variant in analysis on the
version usually encountered in probability as the characteristic function, and however the proofs
of properties are unchanged. The essential differences are in the complex conjugate of eiξ ·x and
integration with respect to 1

(2π)
3
2

dx in place of dx . This latter factor is often selected to make the
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First note that taking Fourier transforms, one sees that incompressibility is
the condition that the vector field v̂(t, ξ) is orthogonal to ξ at all times. On the
other hand, the Fourier transform of the pressure term i p̂(ξ)ξ is in the direction
of iξ . In particular the term involving pressure may be removed by applying a
linear projection πξ⊥w := w − (eξ · w)eξ , eξ = ξ

|ξ | , (ξ �= 0), w ∈ R
3, to the

equation in the direction orthogonal to ξ , referred to as a Leray projection. Assuming
incompressible forcing terms, ĝ is invariant under this projection, as is v̂. Secondly,
by integration by parts, the Fourier transforms of derivatives are Fourier multipliers
and the Fourier transform of a product results in a convolution. This projection,
together with multiplying by e−ν|ξ |2t and integrating, yields the mild form of the
equations as follows (for j = 1, 2, 3):

∂v j

∂t
+

3∑

k=1

(2π)
3
2

∫

R3
v̂k(t, ξ − ω)(−iωk)π̂ξ⊥v j

(t, ω)dω

= −ν|ξ |2v̂ j (t, ξ)+ ĝ j (t, ξ). (28.4)

Equivalently,

∂

∂t
(eν|ξ |2t v̂ j (t, ξ)) =

3∑

k=1

eν|ξ |2t (2π)
3
2 {
∫

R3
v̂k(t, ξ − ω)(iωk)π̂ξ⊥v j

(t, ω)dω}

+ eν|ξ |2t ĝ j (t, ξ), j = 1, 2, 3. (28.5)

Integrating with respect to t , one has

v̂ j (t, ξ)

= e−ν|ξ |2t v̂0(ξ)+
3∑

k=1

(2π)
3
2

∫ t

0
e−ν|ξ |2(t−s)

× {
∫

R3
v̂k(s, ξ − ω)(iωk)π̂ξ⊥v j

(s, ω)dω}ds

+
∫ t

0
e−ν|ξ |2(t−s)ĝ j (s, ξ)ds, j = 1, 2, 3. (28.6)

Fourier transform an isometry on the L2(R3, dx)-space. The minus sign stems from a historical
connection with computing coefficients in Fourier series.
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In vector form, one has, for ξ ∈ R
3\{0},

v̂(t, ξ) = e−ν|ξ |2t v̂0(ξ)+
∫ t

0
e−ν|ξ |2(t−s)

∫

R3
|ξ |(2π) 3

2 v̂(s, ξ − ω)⊗eξ v̂(s, ω)dω

+
∫ t

0
e−ν|ξ |2(t−s)ĝ(s, ξ)ds, ξ · v̂(t, ξ) = 0, v̂(0+, x) = v̂0(ξ),

(28.7)

where for ξ ∈ R
3\{0}, ⊗eξ is the (nonassociative) vector product defined by

w ⊗eξ z = i(eξ · z)πξ⊥w, w, z ∈ C
3, (28.8)

where eξ = ξ
|ξ | , ξ �= 0. The scaling of ξ by |ξ | in this product is responsible for

the factor |ξ | appearing in (28.7). From a probabilistic perspective, it is convenient
to recognize the exponentially distributed holding time P(Tξ > t) = e−ν|ξ |2t in an

initial state ξ �= 0, with pdf ν|ξ |2e−ν|ξ |2s, s ≥ 0. In particular, with a temporary
focus on the time parameter, introducing (and removing) another factor of |ξ |, and
changing variables s → t − s, one obtains the equivalent form:

v̂(t, ξ) = e−ν|ξ |2t v̂0(ξ)+
∫ t

0
ν|ξ |2e−ν|ξ |2s{1

2

∫

R3

2(2π)
3
2

ν|ξ |

v̂(t − s, ω)⊗eξ v̂(t − s, ξ − ω)dω + 1

2

2ĝ(t − s, ξ)

ν|ξ |2 }ds. (28.9)

The “fair coin toss” probability 1
2 is introduced and removed by a factor of two.

In the suggested expected value representation of the equation, this randomizes
between twice the (rescaled) forcing term, including zero forcing, and twice the
branched product term. To accommodate spatial averaging, suppose that h :
R

3\{0} → (0,∞) is a positive measurable function such that

h ∗ h(ξ) ≤ C |ξ |h(ξ), ξ �= 0, (28.10)

for some constant C > 0. Note that replacing h by h/C is equivalent to the
standardization C = 1. Such functions satisfying (28.10) are referred to as
majorizing kernels in this context.10 An important example (Exercise 1) for its
scaling properties is given by

h(ξ) = 1

π3|ξ |2 , ξ �= 0. (28.11)

10See Bhattacharya et al. (2003).
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This kernel will be referred to as the dilogarithmic kernel for reasons provided in
Exercise 2. Another is the Bessel kernel defined by

h(ξ) = 1

2π |ξ |e
−|ξ |, ξ �= 0. (28.12)

Each of the examples was included in the original development by Le Jan and
Sznitman, where, notably, one has equality in (28.10). However a variety of
additional examples11 may be constructed that naturally include, for example, the
parametric family (Exercise 5)

h(α)β (ξ) = |ξ |β−2e−α|ξ |β , ξ �= 0, 0 ≤ β ≤ 1, α > 0. (28.13)

A given majorizing kernel can be used to rescale by

u(t, ξ) = 1

h(ξ)
v̂(t, ξ), ξ �= 0. (28.14)

Given a majorizing kernel h, let

m(ξ) = 2(2π)
3
2 h ∗ h(ξ)

ν|ξ |h(ξ) , ϕ(t, ξ) = 2ĝ(t, ξ)

ν|ξ |2h(ξ)
, ξ �= 0. (28.15)

Then, multiplying (28.7) by 1
h(ξ) , one has the following:

u(t, ξ) = e−ν|ξ |2t u0(ξ)+
∫ t

0
ν|ξ |2e−ν|ξ |2s{1

2
m(ξ)

∫

R3×R3
u(t − s, w1)

⊗eξ u(t − s, w2)H(dω1 × dω2|ξ)+ 1

2
ϕ(t − s, ξ)}ds, (28.16)

where for each ξ �= 0, and for any bounded measurable function f : R3×R
3 → R,

∫

R3×R3
f (ω1, ω2)H(dω1 × dω2|ξ) =

∫

R3
f (ω1, ξ − w1)

h(ω1)h(ξ − ω1)

h ∗ h(ξ)
dω1.

(28.17)
Now (28.16) may be viewed as an equation in expected values of a recursively
defined branching cascade as follows: Starting with wave number ξ �= 0 and time
horizon t ≥ 0, the process holds for an exponentially distributed time Tξ with
parameter ν|ξ |2. On the event [Tξ > t], the cascade terminates with value u0(ξ),
but on the event [Tξ ≤ t], in the remaining time t − Tξ , one tosses a fair coin κθ ,
independently of the value of Tξ , which, if (tail) [κθ = 0], determines a terminal
outcome of ϕ(Tξ , ξ) for the process, while, if (head) [κθ = 1], renews this process

11Bhattacharya et al. (2003).
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0

t

W∅ = ξ

∼ |W∅|−2T∅
W(1) W(2)

∼ |W(2)|−2T(2)

W(2, 2)

∼ |W(2, 2)|−2T(2, 2)

W(1) + W(2) = ξ

|W(1)|−2T(1) ∼

W(11)

W(1, 1) + W(1, 2) = W(1)

W(1, 2)

W(2, 1)

Fig. 28.1 Le Jan–Sznitman Cascade

from a pair of new wave numbers (W1,W2), W1 + W2 = ξ , generated according
to the distribution H(dω1 × dω2|ξ), with respective holding times TW1 , TW2 ,
conditionally independent and exponentially distributed given (W1,W2). Since the
critical branching process terminates at all fair coin tosses that result in tail, the
branching process cannot grow indefinitely. Thus, iterating this process produces an
a.s. finite nested set of terminal values of a finite random tree, denoted τθ (t, ξ). Let
X (t, ξ) denote the nested (nonassociative) ⊗ξ product of terminal values obtained
for this cascade by time t . In view of the recursive definition of X (t, ξ), one may
write (with ξθ = ξ )

X (t, ξ) =

⎧
⎪⎨

⎪⎩

u0(ξθ ), Tξθ ≥ t
ϕ(t − Tξθ , ξθ ), Tξθ < t, κθ = 0
m(ξθ )X

(1)(t − Tξθ ,W1)⊗ξθ X (2)(t − Tξθ ,W2), Tξθ < t, κθ = 1
,

(28.18)
where the root wave number ξθ = ξ and subsequent holding times, coin tosses, etc.
are updated according to this recursion rule to define X (1) and X (2) by the same rules
at the updated root wave numbers W1 and W2, respectively, as depicted in Figure
28.1. u(t, ξ) = Eξ X (t, ξ) solves (28.16), provided that the indicated expected value
exists .

The following theorem provides a global representation as an expected value of
a vector product over an a.s. finite tree for sufficiently small initial data relative to
the selected majorizing kernel.

First let us note that an extension of Fourier transform to tempered distri-
butions12 is achieved as follows. A function ϕ ∈ C(Rk) is said to have rapid

12See Reed and Simon (1972) for a more comprehensive treatment of the theory of distributions in
analysis.
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decay if supx∈Rk (1 + |x |n)|ϕ(x)| < ∞ for n = 1, 2, . . . . Here multi-indices
α, β ∈ {0, 1, 2, . . . }k are used to define powers and orders of derivatives as
xα = (x1, . . . , xk)

α = xα1
1 · · · xαk

k , and ∂β = ∂β1

∂x
β1
1

· · · ∂βk

∂x
βk
k

.

The Schwartz space S is a vector space consisting of all (test) functions ϕ ∈
C(R∞) such that ϕ and all of its partial derivatives have rapid decay. In particular,
C∞c (Rk) ⊂ S ⊂ L2(Rk). So S is a dense subspace of L2. Defining ||ϕ||n,β =
supx∈Rk |(1 + |x |)n∂βϕ(x)|, one may write S = {ϕ ∈ C(R∞) : ||ϕ||n,β <

∞ for all n, β}. In general, ||ϕ||α,β = supx∈Rk |xα∂βϕ(x)| provides a family of
semi-norms for S; the failure to be a norm is due to the fact that ||ϕ||α,β = 0 does
not imply ϕ = 0 (unless α = β = 0). The function

d(ϕ, ψ) =
∑

α,β

2−|α|−|β|
||ϕ − ψ ||α,β

1+ ||ϕ − ψ ||α,β , (28.19)

defines a metric for S such that ϕn → ϕ as n →∞ if and only if ||ϕn −ϕ||α,β → 0
for all α, β. In particular (S, d) is a complete metric space, and (C∞c (Rk), d) is a
dense subspace.

The space S ′ of tempered distributions is the dual space of S consisting of all
continuous linear functionals f on S; continuous in the sense that if ϕn → ϕ

in (S, d), then f (ϕn) → f (ϕ) as n → ∞. Since the Fourier transforms of test
functions ϕ ∈ S are well-defined as L2-functions, the definition of the Fourier
transform of a tempered distribution f ∈ S ′ extends to be the tempered distribution
f̂ given by f̂ (ϕ) = f (ϕ̂).

Let Fh,T denote the Banach space completion of {v ∈ S ′ : ||v||Fh,T =
supξ �=0,0≤t≤T

|v̂(t,ξ)|
h(ξ) < ∞}, where S ′ denotes the space of tempered distributions

on R
3.

Theorem 28.1. 13 Let h be a normalized majorizing kernel. Let 0 < T ≤
+∞ be fixed but arbitrary, and assume that ||v0||Fh,T ≤ (

√
2π)3ν/2, and

||(−Δ)−1g||Fh,T ≤ (
√

2π)3ν2/4. Then (28.7) has a unique solution in the ball

B0(0, R) centered at 0 of radius R = (
√

2π)3ν/2 in the space Fh,T . Moreover,
the Fourier transform is given by

v̂(t, ξ) = h(ξ)EX (t, ξ), ξ ∈ R
3\{0}.

Proof. Recall, m(ξ) = 2(2π)
3
2 h∗h(ξ)

ν|ξ |h(ξ) , u(t, ξ) = v̂(t,ξ)
h(ξ) , and ϕ(t, ξ) = 2ĝ(t,ξ)

ν|ξ |2h(ξ)
. Under

the hypothesis of the theorem, one has |u0(ξ)| ≤ 1, and |ϕ(t, ξ)| ≤ 1 for all t, ξ �=
0, so that from (28.18), one has |X (t, ξ)| ≤ 1 a.s. In particular EX (t, ξ) exists.
Moreover, taking expected values and conditioning on Tθ show that u(t, ξ) is a
solution. Uniqueness is proven as follows. Suppose that w(t, ξ) is another global

13See Bhattacharya et al. (2003).
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solution with |w(t, ξ)| ≤ Rh(ξ). Without loss of generality, one may replace h

by hν = cνh, where cν = R = ν(2π)
3
2 and define γ (t, ξ) = cν/hν(ξ). Then

supξ �=0,0≤t≤T |γ (t, ξ)| ≤ 1. Define a truncation of the cascade at time t , denoted
τθ (t), by

τ (n)(t, ξθ ) = {v ∈ τθ (t) : |v| ≤ n}, n = 0, 1, . . . (28.20)

Let Y (τ (n)θ (t, ξθ )) be the recursively defined random functional given by

Y (τ (n)
θ

(t, ξθ )) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w0(ξθ ), Tθ ≥ t

ϕ(ξθ , t − Tθ ) Tθ < t, κθ = 0

m(ξθ )Y (τ
(n−1)
(1) (t − Tθ ,W1))⊗ξθ Y (τ (n−1)

(2) (t − Tθ ,W2)), Tθ < t, κθ = 1

, (28.21)

for n = 1, 2, . . . , wherew0(ξ) = u0(ξ)/hν(ξ), ϕ(t, ξ) = 2ĝ(t, ξ)/(ν|ξ |2hν(ξ)),

m(ξ) = 2hν ∗ hν(ξ)/)ν(2π)
3
2 |ξ |hν(ξ) ≤ 1, and

Y (τ (0)θ (t, ξθ )) =
⎧
⎨

⎩

w0(ξθ ), Tθ ≥ t
ϕ(ξθ , t − Tθ ) Tθ < t, κθ = 0
m(ξθ )γ (t − Tθ , ξ(1))⊗ξθ γ (t − Tθ , ξ(2)), Tθ < t, κθ = 1

.

(28.22)
Observe that since w(t, ξ) is assumed to be a solution, it follows from the equation
that γ (t, ξ) = EξY (τ (1)θ (t, ξ)). Moreover, this extends by induction by conditioning
on Fn = σ(Tv, ξv, κv : |v| ≤ n) to yield

γ (t, ξ) = EξY (τ (n)θ (t, ξ)), n = 0, 1, 2, . . . (28.23)

In fact, Y (τ (n)θ (t, ξ)), n = 01, 2, . . . , is a martingale with respect to this filtration
(Exercise 4). Specifically, one has constant expected values

Eξθ=ξY (τ (n+1)
θ (t, ξ))

= w0(ξ)e
−ν|ξ |2t + 1

2

∫ t

0
ν|ξ |2e−ν|ξ |2sϕ(t − s, ξ)ds

+ m(ξ)Eξθ=ξ {Y (τ (n)(1) (t − Tθ ,W1))⊗ξθ Y (τ (n)(2) (t − Tθ ,W2))|Tθ ≤ t, κθ = 1}

= w0(ξ)e
−ν|ξ |2t + 1

2

∫ t

0
ν|ξ |2e−ν|ξ |2sϕ(t − s, ξ)ds + m(ξ)

1

2

∫ t

0
ν|ξ |2e−ν|ξ |2s

·
∫

Eξ(1)Y (τ
(n)
(1) (t − s, ξ(1)))⊗eξ Eξ(2)Y (τ

(n)
(2) (t − s, ξ(2)))ds. (28.24)

Now observe that

Y (τ (0)θ , ξ) = X (t, ξ) on [τ (0)θ = τθ (t, ξ)]. (28.25)
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and more generally, since the terms γ (t − Rv, ξv) appear in Y only at truncated
vertices,

Y (τ (n)θ , ξ) = X (t, ξ) on [τ (n)θ = τθ (t, ξ)]. (28.26)

Thus, since

E|Y (τ (n)θ (t, ξ))| ≤ 1, n = 0, 1, 2, . . . , (28.27)

and

E|X (t, ξ)| ≤ 1, (28.28)

we have

|γ (t, ξ)− EX (t, ξ)| = |EY (τ (n)θ (t, ξ))− X (t, ξ)1[τ (n)θ (t, ξ) �= τθ (t, ξ)]|
≤ 2P(τ (n)θ (t, ξ) �= τθ (t, ξ)→ 0 as n →∞, (28.29)

completing the proof of global existence and uniqueness for small initial data. �
The simple example14 below is introduced to illustrate the potential value15 for

analysis of non-uniqueness as the result of modifying the Le Jan–Sznitman cascade
by eliminating the coin toss and consequently permit possible explosion. By elim-
inating the coin toss in the Le Jan–Sznitman cascade, one may ignore (exploding)
paths of finite length in the definition of the cascade and retain the expected value
representation assuming integrability. In this regard, it is insightful to consider
the explosion/non-uniqueness problem for mean-field cascades in which the wave
numbers are replaced by fixed constants α > 0 as in the following example.

Example 1 (α-Riccati Equation). Fix a parameter α > 0, and consider the initial
value problem

du

dt
= −u(t)+ u2(αt), u(0) = u0. (28.30)

In mild form, one has

u(t) = u0e−t +
∫ t

0
e−su2(α(t − s))ds, t ≥ 0. (28.31)

14This example is related to self-similar solutions to a mean-field version of the Navier–Stokes
and/or Burgers equations in Dascaliuc et al. (2018) and Dascaliuc et al. (2019), respectively.
15In another direction, an expected value representation naturally suggests possible numerical
Monte-Carlo schemes, e.g., see Ramirez (2006).
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∅
∼ T∅

α−1T(1) ∼∼ α−1T(2)

∼ α−2T(2,2)

0

t

Fig. 28.2 α-Riccati Cascade

The stochastic cascade associated with this equation is depicted in Figure 28.2. In
the case α = 1, this is the well-known Riccati differential equation, thus the name
α-Riccati.16

As with the Navier–Stokes equations, we wish to consider the uniqueness
problem for global solutions. Adopting a probabilistic perspective on (28.31), let T0
denote a mean one exponentially distributed random variable. If the event [T0 > t]
occurs, then the process terminates with value u0. On the event [T0 ≤ t], the
process branches and repeats in the remaining time t−T0 with a pair of independent
exponential holding times T1 and T2, each having mean α. To code this cascade, let
{Tv : v ∈ T = ∪∞n=0{1, 2}n} be a family of i.i.d. mean one exponentially distributed
random variables. Define the evolutionary process

V (α)(t) =
{
v ∈ T :

|v|−1∑

j=0

α− j Tv| j ≤ t <
|v|∑

j=0

α− j Tv| j
}
, t ≥ 0. (28.32)

16The uniqueness problem for this equation with initial data u0 = 0 was analyzed by Athreya
(1985) and more generally for arbitrary initial data by Dascaliuc et al. (2018) as a multiplicative
cascade of the type described in this chapter.
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Accordingly, V (α) is a continuous time jump Markov process (Exercise 7) taking
value in the (countable) space E of evolutionary sets defined inductively by V ∈ E
if and only if V is a finite subset of T = ∪∞n=0{1, 2}n , such that

V =
{
{θ} if #V = 1,
W\{w} ∪ {< w1 >,< w2 >} some W ∈ E, #W = #V − 1, w ∈ W, else.

Remark 28.3. Although V (α) is a Markov process on E , the cardinality functional
#V (α) is not generally Markov, exceptions being α = 1

2 , 1. When α = 1, #V (α) is
the classical Yule process, and so it is obviously Markov, while the case α = 1

2 is
also special since it is the Poisson process (Exercise 7).

Let N (α)(t) = |V (α)(t)| ≡ #V (α)(t), t ≥ 0, denote the cardinality of the set
V (α)(t).

Theorem 28.2. Let X(t) = uN (α)(t)
0 1[S ≥ t], t ≥ 0, where

S = inf
s∈{1,2}∞

∞∑

j=0

α− j Ts| j .

If u(t) = EX(t) <∞, then u is a solution to (28.31). Moreover, if u is any solution
to (28.31) with u(0) = u0, then u ≤ u.

Proof. Since N (α)(0) = 1, S ≥ 0, one has X(0) = u0 a.s. So u(0) = u0. Observe
that

X(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if S < t

u0 if S ≥ T0 ≥ t

X (1)(α(t − T0))X (2)(α(t − T0)) ifT0 < t ≤ S,

where X (1) and X (2) are independent and distributed as X . The equation for u
follows by an expected value of this decomposition, conditioning on T0 in the
last case. To prove minimality of u, assume u(t) is a global solution. Define the
following sequences of stochastic processes:

X0 (t) = 0, Xn(t) =
{

u0, Tθ ≥ t

X (1)
n−1(α(t − Tθ )) X (2)

n−1(α(t − Tθ )), Tθ < t
, n ∈ N,

(28.33)
and

Y0 (t) = u(t), Yn(t) =
{

u0, Tθ ≥ t

Y (1)
n−1(α(t − Tθ )) Y (2)

n−1(α(t − Tθ )), Tθ < t
, n ∈ N.

(28.34)
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In the above, X (1)
n and X (2)

n are i.i.d. as Xn , same for Y . More explicitly,

Xn(t) = uNn(t)
0 0Mn(t),

where Nn(t) is the number of paths v with |v| < n that cross t and Mn(t) is the
number of paths of length |v| = n that survive by time t . Also,

Yn(t) = uNn(t)
0

∏

|v|=n,

vsurvives by t

u(τv) ,

where τv = α (τv|k − Tv|k) with k = |v| − 1 and τθ = t .
Clearly, Xn(t) ≤ Yn(t) a.s. Moreover, since Xn(t) is eventually monotone

(constant) in n if S ≥ t and Xn(t) = 0 in S < t , we see that

lim
n→∞ Xn(t) = X(t).

Also, using induction on n, E(Yn(t)) = u(t) for all n ∈ N. Thus, by Fatou’s lemma,
E(X(t)) ≤ u(t), which proves the assertion on minimality of u. �
The random variable S denotes the explosion time for the branching cascade. A
simple illustration of its role in the non-uniqueness is illustrated by the following
corollary.

Corollary 28.3. Suppose that u0 = 1. Then u(t) ≡ 1 for all t ≥ 0 is a solution, as
is u(t) = P(S ≥ t), t ≥ 0. Moreover, u = u is the unique global solution if and
only if α ≤ 1.

Proof. It is clear by inspection that u ≡ 1 is a solution, and u is the minimal solution.
The corollary is resolved by showing that P(S ≥ t) < 1 if and only if α > 1. In

fact, let L = sup
w∈{1,2}N

∞∑
k=0

Tw|k
αk = lim

n→∞ max|v|=n

n∑

k=0

Tv|k
αk be the length of the longest path.

Then, S ≤ L a.s. since S is the length of the shortest path. Moreover, for 0 ≤ α ≤ 1,
L = S = ∞ a.s. since for any path s ∈ {1, 2}∞, with probability one,

∞∑

j=0

α− j Ts| j ≥
∞∑

j=0

Ts| j = ∞,
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by, for example, the strong law of large numbers. On the other hand, for α > 1, note
that the sequence Ln = max|v|=n

∑n
j=0 α

− j Tv| j , n ≥ 1, may be bounded iteratively
by

Ln+1 ≤ Ln +Θn+1 ≤ Tθ +
∞∑

n=1

Θn,

where Θn = α−n max{T (1)
n , . . . , T (2n)

n }, where T ( j)
n are i.i.d. mean one exponential

random variables. Fix a sequence θn, n ≥ 1, to be determined, and consider

Prob(Θn > θn) = 1− Prob(Θn ≤ θn)

= 1− (1− e−θnα
n
)2

n

≤ en ln 2−θnα
n = e−n, (28.35)

for θn = n(ln 2+1)α−n . Thus, using Borel–Cantelli lemma, one has with probability
one Θn ≤ θn for all but finitely many n, and therefore

∑∞
n=1 Θn < ∞ a.s. Thus,

S ≤ L <∞ a.s. follows since L = limn→∞ Ln ≤ Tθ +∑∞
n=1 Θn . �

The event [L < ∞], referred to as hyper-explosion, is thus equivalent to explosion
[S <∞]. The non-uniqueness for small (u0 = 0) initial data is related to the hyper-
explosive property. Various other interesting properties of this model are explored
in the exercises.

Exercises

1. Verify that h(ξ) = 1
π3|ξ |2 , ξ �= 0, and h(ξ) = 1

2π |ξ |e
−|ξ |, ξ �= 0, are

standardized majorizing kernels.
2. This exercise assumes the majorizing kernel h(ξ) = 1

π3|ξ |2 , ξ �= 0.

(a) Show that − ∫ t
1

ln(1−u)
u du = ∑∞

k=1
tk

k2 for |t | < 1. The latter is broadly
referred to as Euler’s dilogarithm series, or Spence’s function, denoted
Li2(t).

(b) Show that under the density of the magnitude, the ratio |W1||ξ | (or |W2||ξ | ) is

given by 2
π2 ln | 1+r

1−r | dr
r .

(c) Show that the density in (b) is symmetrically distributed about the identity
of the multiplicative group (0,∞).

(d) Show that the angle between W1 and W2 is uniformly distributed on
{(θ1, θ2, θ3) ∈ (0, π) × (0, π) × (0, 2π) : θ1 + θ2 < π}, where θ1, θ2
are co-latitudes, and θ3 longitude, respectively.
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3. Show that uniqueness of a global solution to the genealogical Navier–Stokes
equations with initial data |u0| as an expected value over the genealogical
cascade (without coin tossing) implies global uniqueness for incompressible
Navier–Stokes equations for the initial data u0 as an expected value over the Le
Jan–Sznitman cascade without coin tossing.

4. Show that Y (τ (n)θ (t, ξ)), n = 0, 1, 2, . . . , is a martingale.
5. Show that the functions hαβ, 0 ≤ β ≤ 2, α > 0, defined in (28.13), provide a

parametric family of majorizing kernels linking the Bessel and dilogarithmic
majorizing kernels.

6. (Non-explosive Yule) It was shown in Exercise 13 of Chapter 5 that the
Yule branching process is non-explosive. Complete the following steps for
an alternative technique to prove non-explosion for a Yule process with
exponentially distributed lifetimes with intensity parameter λ > 0. Let ζ =
limn→∞ min|v|=n

∑n
j=0

1
λ

Tv| j , where Tu, u ∈ ∪∞n=0{1, 2}n is a binary tree-
indexed family of mean one exponential random variables.

(i) Use Fatou’s lemma to show for arbitrary θ > 0,

Ee−θζ ≤ lim inf
n

Ee{−min|v|=n
∑n

j=0
θ
λ

Tv| j }.

(ii) Show that Ee−θζ ≤ lim infn 2n
E
∏n

j=0 e− θ
λ

Tv| j . [Hint: Bound minimal
term by sum over |v| = n.]

(iii) Show that by selecting θ > λ ln 2, Ee−θζ = 0, and therefore ζ = ∞ a.s.

7. (a) Show that the evolutionary set process17 V (α)(t), t ≥ 0, defined by (28.32)
is a Markov process.

(b) Show that the cardinality |V (1)(t)| has a geometric distribution in the case
α = 1, referred to as the Yule process.

(c) Show that |V ( 1
2 )(t)| is a Poisson process in the case α = 1/2. [Hint:

Theorem 15.3]
8. (a) Define a genealogical gauge aα(V ) =∑

v∈V α|v| for evolutionary sets V ∈
E . In particular a1(V ) ≡ |V |. Show that A(t) = e(2α−1)t aα(V (t)), t ≥ 0,
is a positive martingale.

(b) Show that A is uniformly integrable if and only if α ∈ (αc, 1], where αc is
the unique solution to αc lnαc = αc− 1

2 in (0, 1]. In particular αc ≈ 0.187.
[Hint: Use the Neveu–Chauvin inequality18.]

(c) In the case α = 1, show that limt→∞ et |V (1)(t)| = A1 is exponentially
distributed.19

9. Consider a modification of the α-Riccati model in which at each generation a
pair of frequency values (α, β) is generated. For a path v, the holding time is

17This exercise is largely based on Dascaliuc et al. (2017).
18See BCPT, (p. 40).
19This result can be traced back to Kendall (1966).
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exponential with frequency αl(v)βr(v), where l(v) = |v| − r(v) = |{ j ≤ |v| :
v j = 1}. Show that the tree is (i) non-explosive if 0 < a, b ≤ 1, (ii) explosive
but not hyper-explosive if 0 < a ≤ 1 < b, and (iii) hyper-explosive if a, b > 1.

10. (Fisher-KPP Equation) The Fisher–KPP equation is the one-dimensional scalar
equation

∂v

∂t
= ∂2v

∂t2 + v − v2, t > 0, v(0, x) = v0(x), x ∈ R.

(a) Show that v solves Fisher–KPP if and only if v = 1 − u solves ∂u
∂t =

∂2v
∂x2 + u2 − u.

(b) Show20 for the Fourier transform of û(t, ξ), satisfying the equivalent
equation (a), that for a positive function h such that h ∗ h(ξ) = (1 +
ξ2)h(ξ), ξ ∈ R, one has that χ(t, ξ) = û(t,ξ)

h(ξ) satisfies

χ(t, ξ)

= e(1+ξ2)tχ0(ξ)+
∫ t

0

∫

R

(1+ ξ2)e−(1+ξ2)sχ(t − s, η)χ(t − s, ξ − η)
h(η)h(ξ − η)

(1+ ξ2)h(ξ)
dηds.

(c) Show the existence of a suitable function h. [Hint: Consider the ordinary
differential equation governing the inverse Fourier transform of h.]

20For a development of this theory from the perspective of stochastic explosion, see Dascaliuc et al.
(2021a) and Dascaliuc et al. (2021b).
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J Statist 64 Series A, Pt.2:323–343.
Politano H, Pouquet A (1995) Model of intermittency in magnetohydrodynamic turbulence. Phys

Rev E 52:636.
Perrin J (1913) Les Atomes, (French) JFM 44.0913.12 Paris: Alcan. XVI + 296 S. 16mo.
Perrin J (1929) Atoms, Ox Bow Press, (English translation), reprinted 1990, 295 pages.
Peyrière J (1974) Turbulence et dimension de Hausdorff. C R Acad Sci Paris 278:567–569.
Peyriére J (1977) Calculus de dimensions de Hausdorff. Duke Math J 44:591–601.
Pitman J (1997) Enumerations of trees and forests related to branching processes and random

walks. Technical preport No. 482, Department of Statistics, University of California, Berkeley,
pp 1–25.

Pitman J (2002) Combinatorial Stochastic Processes, Ecole d’Eté de Probabilitiés de Saint-Flour
XXXII-2002, Springer Lecture notes No. 1875. Springer, Berlin.

Ramasubramanian S (2009) Lectures on insurance models. American Mathematical Society,
Providence.

Ramirez JM (2006) Multiplicative cascades applied to PDEs (two numerical examples). J Comp
Phy 214(1):122–136.

Reed MC, Simon B (1972) Functional analysis, vol 1. Methods of mathematical physics. Academic
Press, New York.

Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press,
Cambridge.

Rogers LCG (1997) Arbitrage with fractional Brownian motion. Math Fin 7(1):95–105.
Rolski T, Schmidli H, Schmidt V, Teugels JL (1999) Stochastic processes for insurance and finance.

Wiley, Chester.
Salas HD, Poveda G, Mesa O (2017) Testing the beta-lognormal model in amazonian rainfall fields

using the generalized space q-entropy. Entropy Appl Environ Water Eng 19(12):685.
Samorodnitsky G (2006) Long range dependence. Foundations Trends Stoch. Syst 1(3):163–257.
Schoenberg IJ (1938) Metric spaces and positive definite functions. Trans Amer Math Soc 44:522–

536.
She Z-S, Levesque (1994): Universal scaling laws in fully developed turbulence. Phys Rev Lett

72:336.
She Z, Waymire E (1995) Phys Rev Lett 74(2):262–265.



384 References

Shi Z (2012) Branching random walks: Ecole D’Ete de probabilites de saint-flour XLII. Springer,
New York.

Sirao T, Nisida T (1952) On some asymptotic properties concerning Brownian motion. Nagoya
Math J 4:97–101.

Skorokhod A (1956) Teoria, vol 1 (trans. Theory of probability and applications, it appears as
“Limit Theorems for Stochastic Processes”), vol 1, pp 261–290.

Skorokhod’s AV (1965) Studies in the theory of Markov processes, (English trans 1961 Russian
edition).

Slutsky EE (1937) Qualche proposizione relativa alla teoria delle funzioni aleatorie. Giorn Ist Ital
Attuari 8:183–199.

Spitzer F (1956) A combinatorial lemma and its application to probability theory. Trans Amer
Math Soc 82(2):323–339.

Spitzer F (1976) Principles of random walk, 2nd edn. Springer, New York.
Strassen V (1964) An invariance principle for the law of the iterated logarithm. Z. Wahrschein-

lichkeits. Ver Geb 3:211–226.
Stroock DW, Varadhan SRS (1980) Multidimensional diffusion processes. Springer, Berlin.
Sun Y, Stein ML (2015) A stochastic space-time model for intermittent precipitation occurrences.

Ann Appl Statist 9(4):2110–2132.
Watanabe S (1964) On discontinuous additive functionals and Levy measures of a Markov process.

Japanese J Math 34:53–70.
Waymire E, Williams S (1994) A general decomposition theory for random cascades. Bull Amer

Math Soc 31:216–222.
Waymire E, Williams S (1995) Multiplicative cascades: dimension spectra and dependence. In: The

journal of fourier analysis and applications Kahane, Special Issue. CRC Press, Boca Raton, pp
589–609.

Waymire E, Williams S (1996) A cascade decomposition theory with applications to Markov and
exchangeable cascades. Trans Amer Math Soc 348:585–632.

Yaglom AM (1947) Certain limit theorems of the theory of branching random processes, (Russian).
Doklady Akad Nauk SSSR (NS) 56:795–798.

Zhao W, Su W, Wang G (2021) Interactions of velocity structures between large and small scales
in micro-electrokinetic turbulence. Phys Rev Fluids 6:074610

Related Textbooks and Monographs

Athreya KB, Ney PE (1972) Branching processes. Springer, New York.
Bhattacharya R, Majumdar M (2007) Random dynamical systems: theory and applications.

Cambridge University Press, Cambridge.
Bhattacharya R, Ranga Rao R (2010) Normal approximation and asymptotic expansions. SIAM

classics in applied mathematics series. Originally published by Wiley, Philadelphia, (1976).
Bhattacharya R, Waymire E (2009) Stochastic processes with applications. SIAm classics in

applied mathematics series. Originally published by Wiley, Philadelphia (1990).
Bhattacharya R, Waymire E (2007, 2016) A basic course in probability theory. Springer univer-

sitext series, 1st, 2nd edn. Springer International Publishing, Berlin. (ERRATA: http://sites.
science.oregonstate.edu/~waymire/)

Billingsley P (1968) Convergence of probability measures. Wiley, New York.
Billingsley P ( 1986) Probability and measure, 2nd edn. Wiley, New York.
Bradley RC (2007) Introduction to strong mixing conditions, vols 1–3, Kendrick Press, Heber City.
Breiman L (1968, 1992) Probability, Reprinted in SIAM classics in applied mathematics series,

Philadelphia, PA, from Addison Wesley, Reading (1968).
Brémaud P (1981) Point processes and queues: martingale dynamics. Springer, Berlin.
Chung KL (1974) A course in probability theory, 2nd edn. Academic, New York.

http://sites.science.oregonstate.edu/~waymire/
http://sites.science.oregonstate.edu/~waymire/


References 385

Davis M, Etheridge A (2006) Louis Bachelier’s theory of specultation: the origins of modern
finance. Princeton University Press, Princeton.

Doob JL (1953) Stochastic processes. Wiley, New York.
Durrett R (1984) Brownian motion and martingales in analysis. Wadsworth, Belmont.
Durrett R (1995) Probability theory and examples, 2nd edn. Wadsworth, Brooks & Cole, Pacific,

Grove.
Ethier SN, Kurtz TG (1985) Markov processes: characterization and convergence. Wiley, New

York.
Feller W (1968, , vol 1, 3rd edn/1971, vol 2, 2nd edn) An introduction to probability theory and its

applications. Wiley, New York.
Foelmer H, Schied A (2002) Stochastic finance: an introduction in discrete time. Studies in

mathematics, vol 27. Walter de Gruyter, Berlin.
Folland G (1984) Real analysis. Wiley, New York.
Fürth R (1954) Investigations on the theory of the brownian movement. Dover, Downers Grove.
Grimmett G (1999) Percolation, 2nd edn. Springer, Berlin.
Gikhman II, Skorokhod AV (1969) An introduction to the theory of random processes. W.B.

Saunders, Philadelphia.
Hardy GH, Wright EM (1938) An introduction to the theory of numbers, 1st edn. Clarendon Press,

Oxford.
Harris TE (1963) The theory of branching processes. Springer, Berlin.
Itô K, McKean HP (1965) Diffusion processes and their sample paths. Reprint Springer, Berlin.
Itô K, McKean HP (1974) Diffusion processes and their sample paths, 2nd printing. Die

Grundlehren der mathematischen Wissenschaften, 125.
Jacod J, Protter P (2003) Probability essentials. Springer universitext series, 2nd edn. Springer,

New York.
Kac M (1979) In: Baclawski K, Donsker MD (eds) Probability, number theory and statistical

physics: selected papers. MIT Press, Cambridge.
Karatzas I, Shreve SE (1991) Brownian motion and stochastic calculus, 2nd edn. Springer, New

York.
Kallenberg O (2001) Foundations of modern probability, 2nd edn. Springer, New York.
Karlin S, Taylor HM (1975) A first course in stochastic processes. Academic, New York.
Karlin S, Taylor HM (1981) A second course in stochastic processes. Academic, New York.
Kesten H (1982) Percolation theory for mathematicians. Birkhauser, Basel.
Kolmogorov AN (1950) Foundations of the theory of probability. Chelsea, New York (English

trans 1933 German original).
Koshnevisan D (2007) Probability. American Mathematical Society, Providence.
Lamperti J (1996) Probability: a survey of the mathematical theory. Wiley, New York.
Landau LD, Lifshitz EM (1987) Fluid mechanics, course of theoretical physics, vol 6, 2nd revised

edn. Pergamon Press, Oxford.
Laplace PS (1812) Théorie analytique des probabilités. Reprinted in Oeuvres Complète de Laplace,

vol 7. Gauthier-Villars, Paris.
Lawler G, Limic V (2010) Random walk: a modern introduction. Cambridge studies in advanced

mathematics, no 123. Cambridge University Press, Cambridge.
Lemarié-Rieusset PG (2002) Recent developments in the Navier-Stokes problem, Chapman &

Hall/CRC Research Notes in Mathematics, vol 431. Chapman & Hall/CRC, Boca Raton, FL.
xiv+395p

Lévy P (1925) Calcul des Probabilités. Gauthier–Villars, Paris.
Lévy P (1937) Théorie de l’addition des variables aléatores. Gauthier-Villars, Paris.
Lévy P (1965) Processus stochastiques et mouvement brownien, 2nd edn. Gauthier-Villars, Paris

(1st edn. 1948).
Liggett TM (1985) Interacting particle systems. Springer, New York.
Liggett TM (2009) Continuous time markov processes: an introduction. American Mathematical

Society, Providence.
Lindvall T (1992) Lectures on the coupling method. Wiley, New York.



386 References

Lyons R, Peres Y (2016) Probability on trees and networks. Cambridge series in statistical and
probabilistic mathematics. Cambridge University Press, Cambridge.

Mitzenmacher M, Upfal E (2005) Probability and computing (randomized routing probabilistic
analysis). Cambridge University Press, Cambridge.

Nelson E (1959) Regular probability measures on function space. Ann Math 630–643.
Nelson E (1967) Dynamical theories of brownian motion. Princeton University Press, Princeton.
Neveu J (1971) Mathematical foundations of the calculus of probability. Holden-Day, San

Francisco.
Neveu J (1975) Discrete parameter martingales. North-Holland, Amsterdam.
Parthasarathy KR (1967) Probability measures on metric spaces. Academic, New York.
Pitman J (1993) Probability. Springer, New York.
Perrin J (1929) Atoms. Ox Bow Press, Woodbridge (English translation), Reprinted 1990, 295

pages.
Protter P (1990) Stochastic integration and differential equations. Springer, Berlin.
Ramasubramanian S (2009) Lectures on insurance models. American Mathematical Society,

Providence.
Reed MC, Simon B (1972) Functional analysis, vol 1. Methods of mathematical physics.

Academic, New York.
Resnick S (1987) Extreme values, regular variation, and point processes. Springer, New York.
Revuz D, Yor M (1999) Continuous martingales and brownian motion, 3rd edn. Springer, Berlin.
Rogers LCG, Williams D (2000) Diffusions, Markov processes and martingales, vol 1, 2nd edn.,

vol 2. Cambridge University Press, Cambridge.
Rolski T, Schmidli H, Schmidt V, Teugels JL (1999) Stochastic processes for insurance and finance.

Wiley, Chester.
Royden HL (1988) Real analysis, 3rd edn. MacMillan, New York.
Rudin W (1967) Fourier analysis on groups, 2nd edn. Wiley, New York.
Samorodnitsky G, Taqqu M (1994) Stable non-Gaussian Random processes: Stochastic models

with infinite variance. Chapman and Hall, New York.
Samorodnitsky G, Taqqu M (2016) Stochastic processes and long range dependence. Springer

series in operations research and financial engineering. Springer, New York.
Shi Z (2012) Branching random walks: Ecole D’Ete de probabilites de saint-flour XLII. Springer,

New York.
Shiryaev AN (1990) Probability. Springer, New York.
Shreve S (2004) Stochastic calculus for finance. Springer, New York.
Skorokhod’s AV (1965) Studies in the theory of Markov processes (English trans 1961 Russian

edition).
Spitzer F (1976) Principles of random walk, 2nd edn. Springer, New York.
Stroock DW (1993) Probability theory: an analytic view. Cambridge University Press, Cambridge.
Stroock DW, Varadhan SRS (1980) Multidimensional diffusion processes. Springer, Berlin.
Tao T (2012) Topics in random matrix theory. Graduate studies in mathematics, vol 132. American

Mathematical Society, Providence.
Walsh JB (2012) Knowing the odds: an introduction to probability. American Mathematical

Society, Providence.
Wax N (1954) Selected papers on noise and stochastic processes. Dover, Downers Grove.
Williams D (1991) Probability with martingales. Cambridge University Press, Cambridge.



Author Index

A
Agresti, 16
Aidékon, 256
Alexandrov, 203, 240
Athreya, 373

B
Barral, 251, 252
Baudet, 245
Benzi, 245
Bhattacharya, 3, 8, 66, 75, 89, 94,

110, 186, 202, 243, 310, 329,
350, 361, 365, 367, 370

Biferale, 245
Biggins, 252, 261
Billingsley, 75
Black, 280
Blackwell, 311, 341
Blumenthal, 73
Boldyrev, 245
Bradley, 358
Bremaud, 185
Burd, 246

C
Chauvin, 377
Chavarria, 245
Chen, 245, 253, 367, 370
Chentsov, 61
Christensen, 111
Chung, 251
Ciliberto, 245
Cox, 280

D
Dascaliuc, 372, 373, 377, 378
Dey, 252
Dobson, 367, 370
Doeblin, 99
Doob, 14
Dubrulle, 244
Durrett, 253
Dynkin, 73

F
Fefferman, 363
Feller, 58, 188, 198, 216, 222, 312,

322, 342, 347
Ferguson, 294
Fields, 58
Fisher, 253
Foelmer, 279
Fuchs, 251

G
Gantert, 262
Gikhman, 8
Guenther, 367, 370
Guivarc’h, 251
Gupta, 244, 350

H
Hardy, 312
Hartman, 210
Höfelsauer, 262

© Springer Nature Switzerland AG 2021
R. Bhattacharya, E. C. Waymire, Random Walk, Brownian Motion, and Martingales,
Graduate Texts in Mathematics 292, https://doi.org/10.1007/978-3-030-78939-8

387

https://doi.org/10.1007/978-3-030-78939-8


388 Author Index

Hofstad van der, 37
Holley, 253
Hopf, 364, 365
Hostad van der, 35
Hurst, 347
Hutchinson, 325

J
Jin, 251
Johnson, 252, 256

K
Kahane, 244, 248
Keane, 35, 37
Kemperman, 36
Kendall, 377
Kesten, 119
Khinchine, 89, 210
Kolmogorov, 75, 117, 210, 244, 253
Konstantopoulos, 37
Kupiainen, 252
Kyprianou, 252

L
Lévy, 97, 359
Ladyzhenskaya, 363–365
Lalley, 325, 326
Landau, 244, 363
Lawler, 45
LeGall, 268
Leray, 364, 365
Levesque, 244
Lévy, 218
Le Cam, 47, 185
Le Gall, 268, 274
Le Jan, 363, 365
Lifshitz, 363
Liggett, 253
Limic, 45
Lindvall, 110
Lyons, 174, 244

M
Mandelbrot, 244, 347, 356
Mann, 203
Mesa, 244
Michalowski, 372, 377
Miles, 111
Molchin, 245
Moran, 350

N
Nelson, 3, 222
Neveu, 4, 377
Newburgh, 67
Ney, 119
Nikula, 252
Nisida, 96

O
Obukhov, 244
Orum, 367, 370
Ossiander, 245, 367, 370

P
Peidle, 67
Pemantle, 174, 244
Peres, 174, 244
Perrin, 66
Petrovskii, 253
Peyriére, 244, 246
Pham, 378
Piskunov, 253
Politano, 245
Pouquet, 245
Poveda, 244

R
Ramasubramanian, 322, 330, 331, 335, 336
Ramirez, 372
Reed, 369
Richardson, 244
Rogers, 347
Rolski, 345
Ross, 280
Rubenstein, 280
Rueckner, 67

S
Salas, 244
Samorodnitsky, 358
Scheffé, 192, 213
Schied, 279
Schmidli, 345
Schmidt, 345
Schoenberg, 359
Scholes, 280
Seneta, 183
She, Z.S., 244
Shi, 256, 259
Simon, 369



Author Index 389

Sirao, 96
Skorokhod, 8, 75, 203
Slutsky, 61
Spitzer, 38, 119
Stein, 185
Strassen, 90
Stroock, 78
Struglia, 245
Su, 245
Sun, 185
Sznitman, 363, 365

T
Taqqu, 358
Thomann, 367, 370, 372, 373, 377, 378

V
Varadhan, 78

W
Wald, 203
Wallis, 347, 356
Wang, 245
Watanabe, 185
Waymire, 3, 8, 66, 75, 89, 94, 110, 186, 202,

243–246, 248, 252, 256, 310,
329, 350, 361, 365, 372, 373, 377, 378

Williams, 244, 246, 248
Wintner, 210
Wright, 312

Y
Yaglom, 117
Yushekivic, 73

Z
Zhao, 245



Subject Index

Symbols
L p-maximal inequality, 130
ε–optimal stopping time, 299
{Ft : t ∈ T }-submartingale, 124

A
Accessible state, 101
Adjustment coefficient, 145
Admissible strategy, 284
After-s process, 76
After-τ process, 78
Alpha-Ricatti equation, 372
American call option, 288, 303
American option, 297
American put option, 298, 303
Arbitrage free, 284, 286
Arcsine law for argmax on [0, 1] for Brownian

motion, 224
Arcsine law for Brownian motion last zero,

219
Arcsine law for last zero for Brownian motion,

92
Arcsine law for occupation time for Brownian

motion, 222
Arcsine laws for Brownian motion, 82
Ascending ladder heights, 341
Asymmetric simple random walk boundary

distribution, 141
Attainable contingent claim, 284

B
Backward recursion, 291, 292
Bertrand’s ballot theorem, 37

Bessel majorizing kernel, 368
Bienaymé–Galton–Watson Simple branching

Process, 113
Bienaymé–Galton–Watson branching process,

12, 154
Binomial cascade, 245
Binomial tree model, 280
Blumenthal zero–one law, 93
Borel–Tanner distribution, 274
Boundary case for branching random walk,

253
Boundary value distribution

Brownian motion, 85
Branching process, 12

and simple random walk contour, 266
family tree model, 175

Branching with geometric offspring, 118
Breakthrough curve, 191
Brownian bridge, 212, 235
Brownian bridge in non-parametric statistics,

212, 236
Brownian excursion, 269
Brownian meander, 269, 274
Brownian motion, 7, 8, 18

boundary value distribution, 85, 86
construction, 63
extremes (max/min), 212
first passage time process, 83
hitting a two-point boundary, 167
hitting time of a line, 196
law of the iterated logarithm, 89
nowhere differentiable, 67
with one-point absorption, 227
properties, 66

© Springer Nature Switzerland AG 2021
R. Bhattacharya, E. C. Waymire, Random Walk, Brownian Motion, and Martingales,
Graduate Texts in Mathematics 292, https://doi.org/10.1007/978-3-030-78939-8

391

https://doi.org/10.1007/978-3-030-78939-8


392 Subject Index

Brownian motion (cont.)
with reflection at the origin, 229
transience under non-zero drift, 88
transition probabilities, 12
zero set, 91

Brownian sheet, 63, 64

C
Cadlag, 75
Cantor set, 325, 326
Change of measure, 156, 244
Closeable, 128
Closed martingale, 128
Coefficient of variation, 112, 328
Compensator, 190
Complete market, 286, 288
Complex martingale, 126
Compound Poisson process, 55
Conditional Poisson arrival times, 50
Contingent claim, 280
Continuous convolution property, 55
Continuous parameter Gaussian process, 7
Continuous parameter Markov process, 12
Continuous time random walk, 55
Continuous time simple random walk, 23
Contour path, 263
Contour path of branching process, 265
Contour walk, 267
Convergence of reverse martingales, 158
Counting process, 185
Counting process non-explosion criteria, 58
Coupled process, 102
Coupling, 47, 99, 103

inequality, 48
lemma, 103

Cox process, 190
Cox-Ross-Rubenstein model; mathematical

finance, 280
Cramér–Lundberg model, 143, 337
Critical branching, 114
Critical branching process, 13
Critical strong disorder, 253

D
DeFinetti’s theorem, 160
Delayed renewal process, 105
Derivative martingale, 253
Differential equations

Poisson process, 57
Dilogarithm, 376
Dilogarithmic majorizing kernel, 368
Directly Riemann integrable, 322

Discrete parameter Markov process, 9
Distinguished path, 178
Distinguished path analysis, 244
Distribution, 2
Distribution of area under Brownian motion,

212
Distribution of Brownian motion, 67
Distribution of maximum of Brownian bridge,

212
Divided differences, 58
Donsker’s invariance principle, 205, 206
Doob maximal inequality, 128
Doob–Meyer decomposition, 127
Double or nothing strategy, 148
Doubly-stochastic Poisson process, 190
Downcrossing, 151
Dwass’ formula, 268, 274

E
Elementary renewal theorem, 324
Empirical process, 237
Equivalent martingale measure (EMM),

285, 286
Error function, 96
Escape time distribution for Brownian motion,

84
Euler equations, 364
European call option, 280, 303
European put option, 289
Eventually decreasing, 335
Excess of loss policy, 145
Exchangeable martingale differences, 133
Exchangeable sequences, 159
Excursion interval, 269
Excursions of Brownian motion and branching

process, 268
Expiration time, 280
Explosion, 375
Explosion in finite time, 58
Explosive, 52
Exponential martingale, 126, 132
Extinction, 155
Extinction of subcritical

Bienaymé–Galton–Watson branching
process, 14

Extinction probability as fixed point, 114
Extreme value distribution, 54

F
Fair game, 124
Feasible reinsurance policy, 145
Feller-Erdös-Pollard renewal theorem, 107



Subject Index 393

Feller property, 78
Filtration, 75, 124

continuous, 170
Finite dimensional distribution, 2
Finite dimensional distributions

Poisson process, 52
First departure bound, 250
First passage decomposition for Brownian

motion, 84
First passage time distribution for simple

symmetric random walk, 29
First passage time distribution for standard

Brownian motion, 193
First passage time for Brownian motion, 194
First passage time Laplace transform, 83, 95
First passage time process, 81, 83
First return time, 22, 73
Fisher–KPP equation, 253, 378
Fourier transform of tempered distribution, 370
Fourier transform, 365
Fractals, 325
Fractional Brownian random field, 359
Frechet distribution, 54, 59
Functional central limit theorem, 202, 203,

205, 206
invariance principle, 202

Functions of rapid decay, 370

G
Gambler’s ruin, 24, 142
Gamma density, 49
Gamma distribution, 57
Gaussian process, 6
Gaussian random field, 6
Genealogical evolutionary process, 373
Genealogy of branching, 175
Generalized Fibonacci sequence, 111
General point process, 185
General random walk, 4
General renewal model, 336
Generalized ballot theorem, 38
Generation height, 175
Geometric random walk, 25, 282
Ghost edge, 263
Glivenko–Cantelli lemma, 239, 241
Gnedenko–Korolyuk formula, 241
Green’s function of Markov chain, 101
Gumbel distribution, 54
Gumbel extreme value distribution, 54

H
Hölder continuity of sample paths for

Brownian motion, 63
Harris-Ulam labeling, 175
Hazard function, 335
Heat equation, 65
Heavy-tailed claims, 344
Heavy-tailed distribution, 330
Hedging principle, 281
Hedging strategy, 282, 284
Historic probability, 280, 284
Holding time, 49
Homogeneous increments, 50
Homogeneous transition probabilities, 12
Hyperexplosion, 376

I
I.i.d random variables, 4
Incompressible fluid, 363
Independent coupling, 110
Independent increments, 50, 125
Index set, 123
Infinitely divisible distribution, 55
Infinitesimal probabilities

Poisson process, 57
Inherited property of branching process, 155
Inhomogeneous Bienaymé–Galton–Watson

and extinction, 15
Inhomogeneous Poisson process, 53
Inspection paradox, 112, 328
Integrated tail distribution, 335
Intensity parameter, 52
Inter-arrival time, 49
Interval recurrence, 23
Invariance principle, 202, 203, 206
Invariant probability, 102
Inverse Gaussian distribution, 191
Irreducible aperiodic Markov chain

convergence, 104
Irreducible Markov chain, 99

J
Jean Perrin on Brownian motion, 66
Joint distribution of maximum and minimum

for Brownian motion, 85

K
Karamata representation of slowly varying

function, 330
Kesten–Stigum theorem, 174
Key renewal theorem, 321



394 Subject Index

non-lattice case, 322
Khinchine law of the iterated logarithm, 89
Kolmogorov backward and forward equations,

66
Kolmogorov–Chentsov theorem, 61
Kolmogorov consistency conditions, 3
Kolmogorov existence theorem, 3
Kolmogorov maximal inequality, 133
Kolmogorov–Smirnov statistic, 239
Kolmogorov’s probability decay rate for

branching processes, 117
Kolmogorov’s upper class function test at the

origin, 96
Kolmogorov–Yaglom–Kesten–Ney–Spitzer

Theorem, 117

L
Ladder heights, 317
Ladder times, 317
Last visit to zero for simple symmetric random

walk, 216
Lattice distribution, 307
Law of rare events, 47
Law of the iterated logarithm (LIL) for

Brownian motion, 89
Law of the iterated logarithm for sums of i.i.d.

random variables, 209
Lazy random walk, 22
Le Jan–Sznitman cascade, 365
Le Jan–Sznitman cascade without coin tossing,

365
Lebesgue decomposition, 156, 180
Left continuous filtration, 187
Left-skip free property, 37
Leray projection, 366
Lévy–Khinchine formula: special case, 56, 59
Lévy representation for reflecting Brownian

motion, 230
Lévy-Skorohod formula for reflected

Brownian motion, 82
Lifetimes, 105
Light-tailed claim size distribution, 144
Light-tailed distribution, 330, 336
Likelihood ratios, 126, 132
Line of descent, 179
Local clt for simple symmetric random walk,

197
Local limit theorem, 192
Lukasiewicz path, 268
Lundberg bound, 337
Lundberg constant, 337
Lundberg inequality, 144

M
Majorizing kernel, 367
Mann-Wald theorem, 203
Many-to-one formula, 261
Market probability, 280
Markov chain, 18
Markov chain return times, 100
Markov process, 9
Markov property (homogeneous), 71
Markov property for Brownian motion, 77
Markov property of Brownian motion, 77
Markov time, 72
Martingale, 14

characterization of Poisson process, 185
characterization of the Poisson process, 188
closed on the right, 128
difference sequence, 124, 125
gambling strategy, 148
measure, 285
quadratic variation, 127

Mathematical finance, 280
Maximal coupling, 110
Maximal moment inequality, 130
Method of images for simple random walk, 37
Method of images for simple symmetric

random walk, 30
Modification of a stochastic process, 167
Monotone coupling, 110
Multidimensional Brownian motion, 65
Multi-dimensional simple symmetric random

walk, 5
Multiparameter Brownian motion, 359
Multiplicative cascades, 244

N
Navier–Stokes equations, 363
Nonanticipative locally bounded step function,

132
Net profit condition (NPC), 144, 336
Non-explosive, 52
Non-lattice distribution, 307
Nowhere differentiability of Brownian motion,

67

O
Optimal gambling strategy, 148
Optimal stopping time, 291
Option; mathematical finance, 280
Optional sampling, 143
Optional sampling theorems, 142
Optional stopping theorem, 136, 165
Optional time, 164
Order statistic property (o.s.p.), 50



Subject Index 395

Otter-Dwass formulae, 267
Otter formula, 268

P
Packing function, 326
Parameter set, 123
Partition function, 252
Path duality, 223
Path space, 2
Periodic Markov chain, 99
Permutation–invariant, 159
Pointwise standard recurrent Brownian

motion, 87
Poisson

renewal process, 308
sprocess, 5

Poisson approximation, 56
to binomial, 47, 48
error bounds, 47

Poisson arrival time, 50
Poisson distribution, 47
Poisson process, 50, 53, 186

age of last occurrence prior to t , 58
distribution, 52
finite dimensional distributions, 52
homogenization, 55
infinitesimal probabilities, 56, 57
inhomogeneous, 53
splitting, 57
thinning, 57
time change, 55

Poisson random counting measure, 53
Poisson random field, 53
Poisson random field construction, 53
Poisson renewal counting process, 49
Poisson residual lifetime, 58
Pollaczek–Khinchine formula, 337
Polya recurrence/transience criteria for simple

symmetric random walk, 43
Predictable, 186
Pre-τ sigmafield, 164
Predictable strategy, 282
Pre-τ σ -field, 73, 135
Pricing measure, 287
Product probability, 4
Progeny, 263
Progressive measurability, 165
Progressively measurable, 165, 186
Proportionate loss policy, 145
Put-call parity, 289

Q
Queueing process, 14

R
Radon–Nikodym theorem, 162
Random field, 2
Random walks, 125

boundary distribution, 19
boundary distribution under zero drift, 21
bridge, 242
extreme values, 20
extremes (max/min), 38
Markov property, 72

Range of random walk, 24
Recurrence of one-dimensional Brownian

motion with zero drift, 87
Recurrent state, 22, 100
Recurrent stochastic process, 22
Reflecting Brownian motion, 82, 230

Lévy representation, 230
Reflection principle for Brownian motion, 81
Reflection principle for simple random walk,

28
Reflection principle for simple symmetric

random walk, 38
Regime switching model, 288
Regularization of submartingales theorem, 170
Regularly varying, 330
Reinsurance, 145

policy, 145
relative security load, 145

Renewal age, 111
Renewal counting process, 308
Renewal epochs, 106
Renewal equation, 109
Renewal lifespan, 111
Renewal measure, 109, 306, 307
Renewal process

delayed, 308
ordinary, 308

Renewal times, 106, 308
Reservoir storage model, 143
Residual life process, 106
Reverse martingale, 131
Right-closed martingale, 128
Risk free measure, 285
Risk reserve process, 145
Risk, ruin, reinsurance, 143
Ruin probability, 143
Running maximum for Brownian motion, 81

S
Sample path, 2
Sample path regularity of sub-martingales, 170
Schwartz space, 370



396 Subject Index

Self-financing, 284
hedging strategy existence, 282
strategy, 282

Self-similar fractals, 325
Seneta theorem, 183
Shifted Brownian motion, 228
Sierpinksi gasket, 328
Similarity contraction map, 325
Similarity dimension, 326
Simple asymmetric random walk, 141
Simple point process, 185
Simple random walk, 5, 17

construction, 18
Markov property, 72
range, 24

Simple symmetric random walk, 5
boundary distribution, 140
recurrence, 74

Size-bias change of measure, 180
Size-bias offspring distribution, 180
Skorokhod embedding theorem, 203, 204
Skorokhod space, 75
Slowly varying, 330
Sparre-Andersen model, 143, 336
Spence’s function, 376
Spine decomposition, 181, 244
Spitzer comparison lemma, 119
Stable distribution, 82
Standard Brownian motion, 65
Standard space, 2
State space, 2
Stationary increments, 50
Stationary process, 7, 102
Stationary transition probabilities, 9, 12
Stirling formula, 34
Stochastic integral, 132
Stochastic Lebesgue-Stieltjes lemma, 187
Stochastic process, 2
Stochastic recursion, 182
Stock price model, 280
Stopped process, 135
Stopping time, 72, 102
Strassen law of the iterated logarithm, 90
Strike price, 280
Strong disorder, 252
Strong law of large numbers, 159
Strong Markov property, 73

for Brownian motion, 80
for Poisson process, 80
for random walk, 74
for right-continuous Markov process, 78

Subcritical branching, 114
Subexponential distribution, 330
Submartingale, 124

Submartingale convergence theorem, 153
Successful coupling, 103
Supercritical branching, 114
Supermartingale, 124
Symmetrically dependent sequence, 159

T
Tail σ -field, 159
Tempered distribution, 370
Tied-down Brownian motion, 235
Time-homogeneous Markov process, 76
Time-homogeneous transition probability, 9
Total progeny, 263
Trace σ−field, 165
Transience of one-dimensional Brownian

motion with drift, 87, 88
Transient state, 21, 100
Transient stochastic process, 21
Transition probability, 9, 12
Translation-invariant, 7
Tree graph, 178

U
Upcrossing, 151
Upcrossing inequality, 153
Upper class at infinity, 93

V
Value at risk, 147
Version of a stochastic process, 61, 167

W
Waiting time paradox, 112, 328
Wald’s First Identity, 140
Wald’s identities, 140
Wald’s Second Identity, 140
Weak disorder, 252
Wiener measure, 67

Y
Yaglom’s exponential law for branching

processes, 117
Yule branching process, 59, 377
Yule non-explosion, 377
Yule process, 377

Z
Zero-one law for inherited properties, 155
Zero set of Brownian motion, 222
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